You have to enable Java in your browser.


Здесь вы можете рисовать химические формулы онлайн, написать реакцию и многое другое. Изменения, сделанные вами на этой странице нигде не сохраняются, поэтому вам нужно экспортировать полученную химическую структуру (реакцию) в один из форматов: SMILES, MOL, SVG и другие (кнопка во втором ряду, под "i")

Marvin JS


Тут также вы можете создать химическую формулу, написать реакцию и многое другое, в том числе радикалы, заряды и так далее. Этот редактор поддерживает больше форматов, которые можно сразу же скачать, после того, как вы нарисовали. Он умеет импортировать из других форматов файлов.

Помните, что изменения, сделанные вами на этой странице нигде не сохраняются, поэтому вам нужно экспортировать полученную химическую структуру (реакцию) в один из форматов химических структур или картинок (нажимать на дискетку)

PubChem

В этом on-line редакторе химических формул, также можно рисовать химические формулы. Интерфейс у него достаточно древний и может не всем подойдёт, зато экспортировать он умеет во многие форматы. В любом случае, химики не избалованы красивыми интерфейсами приложений:)

Напоминание, сделанные вами на этой странице нигде не сохраняются, поэтому вам нужно экспортировать полученную химическую структуру (реакцию) в один из форматов химических структур или картинок (есть кнопка "Export")

Химическое уравнение представляет собой запись реакции с помощью символов элементов и формул соединений, принимающих в ней участие. Относительные количества реагентов и продуктов, выраженные в молях, указываются численными коэффициентами в полном (сбалансированном) уравнении реакции. Эти коэффициенты иногда называют стехиометрическими коэффициентами. В настоящее время наблюдается все возрастающая тенденция включать в химические уравнения указания физического состояния реагентов и продуктов. Это делается с помощью следующих обозначений: (газ) или означает газообразное состояние, (-жидкость, ) - твердое вещество, (-водный раствор.

Химическое уравнение может быть составлено на основе экспериментально установленного знания реагентов и продуктов изучаемой реакции, а также путем измерения относительных количеств каждого реагента и продукта, которые принимают участие в реакции.

Составление химического уравнения

Составление полного химического уравнения включает следующие четыре стадии.

1-я стадия. Запись реакции в словесном выражении. Например,

2-я стадия. Замена словесных названий формулами реагентов и продуктов.

3-я стадия. Балансировка уравнения (определение его коэффициентов)

Такое уравнение называется сбалансированным или стехиометрическим. Необходимость сбалансировать уравнение диктуется тем, что в любой реакции должен выполняться закон сохранения материи. Применительно к реакции, рассматриваемой нами в качестве примера, это означает, что в ней не может ни образоваться, ни исчезнуть ни один атом магния, углерода или кислорода. Другими словами, число атомов каждого элемента в левой и правой частях химического уравнения должно быть одинаково.

4-я стадия. Указание физического состояния каждого участника реакции.

Типы химических уравнений

Рассмотрим следующее полное уравнение:

Это уравнение описывает всю реакционную систему в целом. Однако рассматриваемую реакцию можно также представить в упрощенном виде при помощи ионного уравнения-.

Это уравнение не включает сведений о сульфат-ионах которые не указаны в нем потому, что они не принимают участия в рассматриваемой реакции. Такие ионы называют ионами-наблюдателями.

Реакция между железом и медью (II) является примером окислительно-восстановительных реакций (см. гл. 10). Ее можно условно разделить на две реакции, одна из которых описывает восстановление, а другая - окисление, протекающие одновременно в общей реакции:

Эти два уравнения называются уравнениями полуреакций. Они особенно часто используются в электрохимии для описания процессов, протекающих на электродах (см. гл. 10).

Интерпретация химических уравнений

Рассмотрим следующее простое стехиометрическое уравнение:

Его можно интерпретировать двумя способами. Во-первых, согласно этому уравнению, один моль молекул водорода реагирует с одним молем молекул брома образуя два моля молекул бромоводорода Такое истолкование химического уравнения иногда называют его молярной интерпретацией.

Однако можно истолковать данное уравнение и так, что в результирующей реакции (см. ниже) одна молекула водорода реагирует с одной молекулой брома образуя две молекулы бромоводорода Подобное истолкование химического уравнения иногда называют его молекулярной интерпретацией.

И молярная, и молекулярная интерпретации одинаково правомочны. Однако было бы совершенно неправильно заключить на основании уравнения рассматриваемой реакции, что одна молекула водорода сталкивается с одной молекулой брома образуя две молекулы бромоводорода Дело в том, что данная реакция, как и большинство других, осуществляется в несколько последовательных стадий. Совокупность всех этих стадий принято называть механизмом реакции (см. гл. 9). В рассматриваемом нами примере реакция включает следующие стадии:

Таким образом, рассматриваемая реакция в действительности представляет собой цепную реакцию, в которой участвуют интермедиаты (промежуточные реагенты), называемые радикалами (см. гл. 9). Механизм рассматриваемой реакции включает еще и другие стадии и побочные реакции. Таким образом, стехиометрическое уравнение указывает только результирующую реакцию. Оно не дает сведений о механизме реакции.

Вычисления с помощью химических уравнений

Химические уравнения являются отправной точкой для самых разнообразных химических расчетов. Здесь и далее в книге дан ряд примеров подобных расчетов.

Вычисление массы реагентов и продуктов. Мы уже знаем, что сбалансированное химическое уравнение указывает относительные молярные количества реагентов и продуктов, участвующих в реакции. Эти количественные данные позволяют вычислять массы реагентов и продуктов.

Вычислим массу хлорида серебра, образующегося при добавлении избыточного количества раствора хлорида натрия к раствору, в котором содержится 0,1 моль серебра в форме ионов

Первой стадией всех подобных расчетов является запись уравнения рассматриваемой реакции: I

Поскольку в реакции используется избыточное количество хлорид-ионов, можно предположить, что все имеющиеся в растворе ионы превращаются в Уравнение реакции показывает, что из одного моля ионов получается один моль Это позволяет вычислить массу образующегося следующим образом:

Следовательно,

Поскольку г/моль, то

Определение концентрации растворов. Вычисления, основанные на стехиометрических уравнениях, лежат в основе количественного химического анализа. В качестве примера рассмотрим определение концентрации раствора по известной массе продукта, образующегося в реакции. Такая разновидность количественного химического анализа называется гравиметрическим анализом.

К раствору нитрата добавлено такое количество раствора иодида калия, которого достаточно, чтобы осадить весь свинец в форме иодида Масса образовавшегося иодида составила 2,305 г. Объем исходного раствора нитрата был равен Требуется определить концентрацию исходного раствора нитрата

Мы уже сталкивались с уравнением рассматриваемой реакции:

Это уравнение показывает, что для получения одного моля иодида необходим один моль нитрата свинца (II). Определим молярное количество образовавшегося в реакции иодида свинца (II). Поскольку

1) Для того,чтобы расставить расставить коэффициенты в уравнении химической реакции онлайн вставьте уравнение и нажмите "Уравнять"

2) Символы химических элементов следует записывать строго в том виде, в котором они фигурируют в таблице Менделеева. Т.е. первая буква в обозначении символа любого химического элемента должна быть заглавной, а вторая строчной. Например, символ химического элемента марганца следует записать как Mn, но не ни в коем случае как mn и mN;

3) Изредка возникают ситуации, когда формулы реагентов и продуктов записаны абсолютно верно, но коэффициенты все равно не расставляются. Такое может возникать в тех случаях, если коэффициенты в уравнении могут быть расставлены двумя или более способами. Наиболее вероятно возникновение такой проблемы с реакциями окисления органических веществ при которых рвется углеродный скелет. В таком случае попробуйте заменить неизменяемые фрагменты органических молекул на какой-нибудь произвольный символ, например радикал фенил C 6 H 5 можно обозначить как Ph или X. Например, следующее уравнение:

C 6 H 5 CH 2 CH 3 + KMnO 4 + H 2 SO 4 → C 6 H 5 COOH + CO 2 + K 2 SO 4 + MnSO 4 + H 2 O

не будет сбалансировано, так как возможна разная расстановка коэффициентов. Однако, введя обозначение C 6 H 5 = Ph, расстановка коэффициентов происходит корректно:

5PhCH 2 CH 3 + 12KMnO 4 + 18H 2 SO 4 → 5PhCOOH + 5CO 2 + 6K 2 SO 4 + 12MnSO 4 + 28H 2 O

Примечание

В уравнении допускается для разделения формул реагентов от формул продуктов использовать как знак равенства (=), так и стрелку (→), а также случайная запись отдельных букв символов химических элементов не латиницей, а кириллицей в случае их идентичного написания, как, например, символов C, H, O, P.

История

Титульный лист Tyrocinium Chymicum.

Сначала не было представления о химических уравнениях, ещё не были известны основные химические законы, но уже в стародавние времена, в алхимический период развития химии начали обозначать химические элементы символами.

С дальнейшим развитием химии менялись представления о символике химических элементов , расширялись знания об их соединениях. С открытием множества химических явлений возникла необходимость в переходе от их словесного описания к более удобной математической записи, используя химические формулы . Первым предложил использовать химические уравнения Жан Бегун (Jean Beguin) в 1615 году в первом учебнике по химии Tyrocinium Chymicum («Начала химии»).

Конец XVIII - начало XIX вв.-становление законов стехиометрии. У истоков этих исследований стоял немецкий ученый И. В. Рихтер . В студенческие годы на него большое впечатление произвели слова его учителя - философа И. Канта о том, что в отдельных направлениях естественных наук истинной науки столько, сколько в ней математики. Рихтер посвятил свою диссертацию использованию математики в химии. Не будучи в сущности химиком, Рихтер ввел первые количественные уравнения химических реакций, стал использовать термин стехиометрия .

Правила составления

В левой части уравнения записывают формулы(формулу) веществ, вступивших в реакцию, соединяя их знаком "плюс". В правой части уравнения записывают формулы(формулу) образовавшихся веществ, также соединенных знаком "плюс". Между частями уравнения ставят стрелку. Затем находят коэффициенты - числа, стоящие перед формулами веществ, чтобы число атомов одинаковых элементов в левой и правой частях уравнения было равным.

Для составления уравнений химических реакций, кроме знания формул реагентов и продуктов реакции, необходимо верно подобрать коэффициенты. Это можно сделать, используя несложные правила:

1. Перед формулой простого вещества можно записывать дробный коэффициент, который показывает количество вещества реагирующих и образующихся веществ.

2. Если в схеме реакции есть формула соли, то вначале уравнивают число ионов, образующих соль .

3. Если участвующие в реакции вещества содержат водород и кислород, то атомы водорода уравнивают в предпоследнюю очередь, а атомы кислорода - в последнюю.

4. Если в схеме реакции имеется несколько формул солей, то необходимо начинать уравнивание с ионов, входящих в состав соли, содержащей большее их число.

Символы в химических уравнениях

Для обозначения различных типов реакций используются следующие символы:

Расстановка коэффициентов в уравнениях

Закон сохранения массы гласит, что количество вещества каждого элемента до реакции равняется количеству вещества каждого элемента после реакции. Таким образом, левая и правая части химического уравнения должны иметь одинаковое количество атомов того или иного элемента. Химическое уравнение должно быть электронейтрально, то есть сумма зарядов в левой и правой части уравнения в сумме должны давать ноль. Одним из способов уравнивания количества атомов в химическом уравнении является подбор коэффициентов методом проб и ошибок. Для более сложных случаев следует использовать систему линейных алгебраических уравнений. Как правило,химические уравнения записываются с наименьшими целочисленными коэффициентами. В случае если перед химической формулой нет коэффициента, подразумевается что он равен единице. Проверка материального баланса, то есть количества атомов с левой и правой части, может быть следующей: перед самой сложной химической формулой ставится коэффициент 1. Далее расставляются коэффициенты перед формулами таким образом, что бы количество атомов каждого из элементов в левой и правой части уравнения было равно. Если один из коэффициентов - дробный, то следует умножить все коэффициенты на число стоящее в знаменателе дробного коэффициента. Если перед формулой коэффициент 1, то его опускают. Пример, расстановка коэффициентов в химической реакции горение метана:

1CH 4 + O 2 CO 2 + H 2 O

Количество атомов углерода с левой и правой сторон одинаково. Следующий элемент, который следует уравнять - водород. Слева 4 атома водорода, справа 2, чтобы уравнять количество атомов водорода следует поставить коэффициент 2 перед водой, в результате:

1CH 4 + O 2 CO 2 + 2H 2 O

Проверка правильности расстановки коэффициентов в любом химическом уравнении производится подсчетом количества атомов кислорода, если в левой и правой части количество атомов кислорода одинаково, значит коэффициенты расставлены правильно.

1CH 4 + 2O 2 CO 2 + 2H 2 O

Перед молекулами CH 4 и CO 2 коэффициент 1 опускают.

Окислительно-восстановительные реакции

Окислительно-восстановительные реакции (ОВР) - это встречно-параллельные химические реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, реализующихся путём перераспределения электронов между атомом-окислителем и атомом-восстановителем.

В процессе окислительно-восстановительной реакции восстановитель отдаёт электроны, то есть окисляется; окислитель присоединяет электроны, то есть восстанавливается. Причём любая окислительно-восстановительная реакция представляет собой единство двух противоположных превращений - окисления и восстановления, происходящих одновременно и без отрыва одного от другого.

Окисление - процесс отдачи электронов, с увеличением степени окисления. При окислении вещества в результате отдачи электронов увеличивается его степень окисления. Атомы окисляемого вещества называются донорами электронов, а атомы окислителя - акцепторами электронов. Окислитель, принимая электроны, приобретает восстановительные свойства, превращаясь в сопряжённый восстановитель.

Восстановлением называется процесс присоединения электронов атомом вещества, при этом его степень окисления понижается. При восстановлении атомы или ионы присоединяют электроны. При этом происходит понижение степени окисления элемента. Восстановитель, отдавая электроны, приобретает окислительные свойства, превращаясь в сопряжённый окислитель.

При составлении уравнения окислительно-восстановительной реакции необходимо определить восстановитель, окислитель и число отдаваемых и принимаемых электронов. Как правило, коэффициенты подбирают, используя либо метод электронного баланса , либо метод электронно-ионного баланса (иногда последний называют методом полуреакций).

Подбор коэффициентов методом электронного баланса.

В простых уравнениях коэффициенты подбирают поэлементно в соответствии с формулой конечного продукта. В более сложных уравнениях окислительно-восстановительных реакций подбор коэффицентов проводят методом электронного баланса:

1. Записывают схему реакции (формулу реагентов и продуктов), а затем находят элементы, которые повышают и понижают свои степени окисления, и выписывают их отдельно;

2. Составляют уравнения полуреакций восстановления и окисления, соблюдая законы сохранения числа атомов и заряда в каждой полуреакции;

3. Подбирают дополнительные множители для уравнивания полуреакций так, чтобы закон сохранения заряда выполнялся для реакции в целом, для чего число принятых элементов в полуреакциях восстановления делают равным числу отданных элементов в полуреакции окисления;

4. Проставляют (по найденным множителям) стехиометрические коэффициенты в схему реакции (коэффициент 1 опускается);

5. Уравнивают числа атомов тех элементов, которые не изменяют своей степени окисления при протекании реакции (если таких элементов два, то достаточно уравнять число атомов одного из них, а по второму провести проверку). Получают уравнения химической реакции;

6. Проводят проверку по элементу, который не менял свою степень окисления (чаще всего это кислород).

Расстановка коэффициентов в ионных уравнениях

Ионные уравнения - это химические уравнения, в которых электролиты записаны в виде диссоциировавших ионов. Ионные уравнения используются для записи реакций замещения и реакций обмена в водных растворах. Пример, реакция обмена, взаимодействие хлорида кальция и нитрата серебра с образованием осадка хлорида серебра:

CaCl 2 (ж) + 2AgNO 3 (ж) Ca(NO 3) 2 (ж) + 2AgCl(тв)

полное ионное уравнение:

Ca 2+ + 2Cl − + 2Ag + + 2NO 3 − Ca 2+ + 2NO 3 − + 2AgCl(тв)

сокращенное ионное уравнение:

2Cl − (ж) + 2Ag + (ж) 2AgCl(тв)

ионное уравнение:

Ag + + Cl − AgCl(тв)

Ионы Ca 2+ и NO 3 − остаются в растворе, поэтому не являются участниками химической реакции. В реакциях нейтрализации ионное уравнение реакции выглядит следующим образом:

H + + OH − H 2 O

Существует несколько реакций нейтрализации, которые дают еще одно мало диссоциирующее вещество помимо воды. Примером может служить реакция гидроксида бария с фосфорной кислотой, так как образуется нерастворимый в воде фосфат бария.

Литература

  1. Левицкий М. Язык химиков // Химия и жизнь. – 2000. –№1. – С.50-52.
  2. Кудрявцев А.А. Составление химических уравнений - 4-е издание, перераб. и доп., 1968 - 359с.
  3. Берг Л.Г. Громаков С.Д. Зороацкая И.В. Аверко-Антонович И.Н. Способы подбора коэффициентов в химических уравнениях - Казань: изд-во Казанского ун-та, 1959.- 148 с.
  4. Леенсон И.А. Чет или нечет - М.: Химия, 1987. - 176с.
  5. Химия, учебник 8 класса. Издательство ARC. 2003.
  6. Химия, учебник 8 класса. Издательство Дрофа. 2009.
  7. Химия, учебник 8 класса. Издательство "Мектеп" алматы. 2012.
  8. Химия, учебник 9 класса. Издательство "Просвещение" 2008.

См. также

Ссылки

  • // Энциклопедический словарь Брокгауза и Ефрона : В 86 томах (82 т. и 4 доп.). - СПб. , 1890-1907.

9.1. Какие бывают химические реакции

Вспомним, что химическими реакциями мы называем любые химические явления природы. При химической реакции происходит разрыв одних и образование других химических связей. В результате реакции из одних химических веществ получаются другие вещества (см. гл. 1).

Выполняя домашнее задание к § 2.5, вы познакомились с традиционным выделением из всего множества химических превращений реакций четырех основных типов, тогда же вы предложили и их названия: реакции соединения, разложения, замещения и обмена.

Примеры реакций соединения:

C + O 2 = CO 2 ; (1)
Na 2 O + CO 2 = Na 2 CO 3 ; (2)
NH 3 + CO 2 + H 2 O = NH 4 HCO 3 . (3)

Примеры реакций разложения:

2Ag 2 O 4Ag + O 2­ ; (4)
CaCO 3 CaO + CO 2­ ; (5)
(NH 4) 2 Cr 2 O 7 N 2­ + Cr 2 O 3 + 4H 2 O­ . (6)

Примеры реакций замещения:

CuSO 4 + Fe = FeSO 4 + Cu ; (7)
2NaI + Cl 2 = 2NaCl + I 2 ; (8)
CaCO 3 + SiO 2 = CaSiO 3 + CO 2­ . (9)

Реакции обмена – химические реакции, в которых исходные вещества как бы обмениваются своими составными частями.

Примеры реакций обмена:

Ba(OH) 2 + H 2 SO 4 = BaSO 4 + 2H 2 O; (10)
HCl + KNO 2 = KCl + HNO 2 ; (11)
AgNO 3 + NaCl = AgCl + NaNO 3 . (12)

Традиционная классификация химических реакций не охватывает все их разнообразие – кроме реакций четырех основных типов существует еще и множество более сложных реакций.
Выделение двух других типов химических реакций основано на участии в них двух важнейших нехимических частиц: электрона и протона.
При протекании некоторых реакций происходит полная или частичная передача электронов от одних атомов к другим. При этом степени окисления атомов элементов, входящих в состав исходных веществ, изменяются; из приведенных примеров это реакции 1, 4, 6, 7 и 8. Эти реакции называются окислительно-восстановительными .

В другой группе реакций от одной реагирующей частицы к другой переходит ион водорода (Н +), то есть протон. Такие реакции называют кислотно-основными реакциями или реакциями с передачей протона .

Среди приведенных примеров такими реакциями являются реакции 3, 10 и 11. По аналогии с этими реакциями окислительно-восстановительные реакции иногда называют реакциями с передачей электрона . С ОВР вы познакомитесь в § 2, а с КОР – в следующих главах.

РЕАКЦИИ СОЕДИНЕНИЯ, РЕАКЦИИ РАЗЛОЖЕНИЯ, РЕАКЦИИ ЗАМЕЩЕНИЯ, РЕАКЦИИ ОБМЕНА, ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ, КИСЛОТНО-ОСНОВНЫЕ РЕАКЦИИ.
Составьте уравнения реакций, соответствующих следующим схемам:
а) HgO Hg + O 2 (t ); б) Li 2 O + SO 2 Li 2 SO 3 ; в) Cu(OH) 2 CuO + H 2 O (t );
г) Al + I 2 AlI 3 ; д) CuCl 2 + Fe FeCl 2 + Cu; е) Mg + H 3 PO 4 Мg 3 (PO 4) 2 + H 2 ;
ж) Al + O 2 Al 2 O 3 (t ); и) KClO 3 + P P 2 O 5 + KCl (t ); к) CuSO 4 + Al Al 2 (SO 4) 3 + Cu;
л) Fe + Cl 2 FeCl 3 (t ); м) NH 3 + O 2 N 2 + H 2 O (t ); н) H 2 SO 4 + CuO CuSO 4 + H 2 O.
Укажите традиционный тип реакции. Отметьте окислительно-восстановительные и кислотно-основные реакции. В окислительно-восстановительных реакциях укажите, атомы каких элементов меняют свои степени окисления.

9.2. Окислительно-восстановительные реакции

Рассмотрим окислительно-восстановительную реакцию, протекающую в доменных печах при промышленном получении железа (точнее, чугуна) из железной руды:

Fe 2 O 3 + 3CO = 2Fe + 3CO 2 .

Определим степени окисления атомов, входящих в состав как исходных веществ, так и продуктов реакции

Fe 2 O 3 + = 2Fe +

Как видите, степень окисления атомов углерода в результате реакции увеличилась, степень окисления атомов железа уменьшилась, а степень окисления атомов кислорода осталась неизменной. Следовательно, атомы углерода в этой реакции подверглись окислению, то есть потеряли электроны (окислились ), а атомы железа – восстановлению, то есть присоединили электроны (восстановились ) (см. § 7.16). Для характеристики ОВР используют понятия окислитель и восстановитель .

Таким образом, в нашей реакции атомами-окислителями являются атомы железа, а атомами-восстановителями – атомы углерода.

В нашей реакции веществом-окислителем является оксид железа(III), а веществом-восстановителем – оксид углерода(II).
В тех случаях, когда атомы-окислители и атомы-восстановители входят в состав одного и того же вещества (пример: реакция 6 из предыдущего параграфа), понятия " вещество-окислитель" и " вещество-восстановитель" не используются.
Таким образом, типичными окислителями являются вещества, в состав которых входят атомы, склонные присоединять электроны (полностью или частично), понижая свою степень окисления. Из простых веществ это прежде всего галогены и кислород, в меньшей степени сера и азот. Из сложных веществ – вещества, в состав которых входят атомы в высших степенях окисления, не склонные в этих степенях окисления образовывать простые ионы: HNO 3 (N +V), KMnO 4 (Mn +VII), CrO 3 (Cr +VI), KClO 3 (Cl +V), KClO 4 (Cl +VII) и др.
Типичными восстановителями являются вещества, в состав которых входят атомы, склонные полностью или частично отдавать электроны, повышая свою степень окисления. Из простых веществ это водород, щелочные и щелочноземельные металлы, а также алюминий. Из сложных веществ – H 2 S и сульфиды (S –II), SO 2 и сульфиты (S +IV), йодиды (I –I), CO (C +II), NH 3 (N –III) и др.
В общем случае почти все сложные и многие простые вещества могут проявлять как окислительные, так и восстановительные свойства. Например:
SO 2 + Cl 2 = S + Cl 2 O 2 (SO 2 – сильный восстановитель);
SO 2 + C = S + CO 2 (t) (SO 2 – слабый окислитель);
C + O 2 = CO 2 (t) (C – восстановитель);
C + 2Ca = Ca 2 C (t) (С – окислитель).
Вернемся к реакции, разобранной нами в начале этого параграфа.

Fe 2 O 3 + = 2Fe +

Обратите внимание, что в результате реакции атомы-окислители (Fe +III) превратились в атомы-восстановители (Fe 0), а атомы-восстановители (C +II) превратились в атомы-окислители (C +IV). Но CO 2 в любых условиях очень слабый окислитель, а железо, хоть и является восстановителем, но в данных условиях значительно более слабым, чем CO. Поэтому продукты реакции не реагируют друг с другом, и обратная реакция не протекает. Приведенный пример является иллюстрацией общего принципа, определяющего направление протекания ОВР:

Окислительно-восстановительные реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя.

Окислительно-восстановительные свойства веществ можно сравнивать только в одинаковых условиях. В некоторых случаях это сравнение может быть проведено количественно.
Выполняя домашнее задание к первому параграфу этой главы, вы убедились, что подобрать коэффициенты в некоторых уравнениях реакций (особенно ОВР) довольно сложно. Для упрощения этой задачи в случае окислительно-восстановительных реакций используют следующие два метода:
а) метод электронного баланса и
б) метод электронно-ионного баланса .
Метод электронного баланса вы изучите сейчас, а метод электронно-ионного баланса обычно изучается в высших учебных заведениях.
Оба эти метода основаны на том, что электроны в химических реакциях никуда не исчезают и ниоткуда не появляются, то есть число принятых атомами электронов равно числу электронов, отданных другими атомами.
Число отданных и принятых электронов в методе электронного баланса определяется по изменению степени окисления атомов. При использовании этого метода необходимо знать состав как исходных веществ, так и продуктов реакции.
Рассмотрим применение метода электронного баланса на примерах.

Пример 1. Составим уравнение реакции железа с хлором. Известно, что продуктом такой реакции является хлорид железа(III). Запишем схему реакции:

Fe + Cl 2 FeCl 3 .

Определим степени окисления атомов всех элементов, входящих в состав веществ, участвующих в реакции:

Атомы железа отдают электроны, а молекулы хлора их принимают. Выразим эти процессы электронными уравнениями :
Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I .

Чтобы число отданных электронов было равно числу принятых, надо первое электронное уравнение умножить на два, а второе – на три:

Fe – 3e – = Fe +III ,
Cl 2 + 2e – = 2Cl –I
2Fe – 6e – = 2Fe +III ,
3Cl 2 + 6e – = 6Cl –I .

Введя коэффициенты 2 и 3 в схему реакции, получаем уравнение реакции:
2Fe + 3Cl 2 = 2FeCl 3 .

Пример 2. Составим уравнение реакции горения белого фосфора в избытке хлора. Известно, что в этих условиях образуется хлорид фосфора(V):

+V –I
P 4 + Cl 2 PCl 5 .

Молекулы белого фосфора отдают электроны (окисляются), а молекулы хлора их принимают (восстанавливаются):

P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
1
10
2
20
P 4 – 20e – = 4P +V
Cl 2 + 2e – = 2Cl –I
P 4 – 20e – = 4P +V
10Cl 2 + 20e – = 20Cl –I

Полученные первоначально множители (2 и 20) имели общий делитель, на который (как будущие коэффициенты в уравнении реакции) и были разделены. Уравнение реакции:

P 4 + 10Cl 2 = 4PCl 5 .

Пример 3. Составим уравнение реакции, протекающей при обжиге сульфида железа(II) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

В этом случае окисляются и атомы железа(II), и атомы серы(– II). В состав сульфида железа(II) атомы этих элементов входят в отношении 1:1 (см. индексы в простейшей формуле).
Электронный баланс:

4 Fe +II – e – = Fe +III
S –II – 6e – = S +IV
Всего отдают 7е
7 O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS + 7O 2 = 2Fe 2 O 3 + 4SO 2 .

Пример 4 . Составим уравнение реакции, протекающей при обжиге дисульфида железа(II) (пирита) в кислороде.

Схема реакции:

+III –II +IV –II
+ O 2 +

Как и в предыдущем примере, здесь тоже окисляются и атомы железа(II), и атомы серы, но со степенью окисления – I. В состав пирита атомы этих элементов входят в отношении 1:2 (см. индексы в простейшей формуле). Именно в этом отношении атомы железа и серы вступают в реакцию, что и учитывается при составлении электронного баланса:

Fe +III – e – = Fe +III
2S –I – 10e – = 2S +IV
Всего отдают 11е
O 2 + 4e – = 2O –II

Уравнение реакции: 4FeS 2 + 11O 2 = 2Fe 2 O 3 + 8SO 2 .

Встречаются и более сложные случаи ОВР, с некоторыми из них вы познакомитесь, выполняя домашнее задание.

АТОМ-ОКИСЛИТЕЛЬ, АТОМ-ВОССТАНОВИТЕЛЬ, ВЕЩЕСТВО-ОКИСЛИТЕЛЬ, ВЕЩЕСТВО-ВОССТАНОВИТЕЛЬ, МЕТОД ЭЛЕКТРОННОГО БАЛАНСА, ЭЛЕКТРОННЫЕ УРАВНЕНИЯ.
1.Составьте электронный баланс к каждому уравнению ОВР, приведенному в тексте § 1 этой главы.
2.Составьте уравнения ОВР, обнаруженных вами при выполнении задания к § 1 этой главы. На этот раз для расстановки коэффициентов используйте метод электронного баланса. 3.Используя метод электронного баланса, составьте уравнения реакций, соответствующие следующим схемам: а) Na + I 2 NaI;
б) Na + O 2 Na 2 O 2 ;
в) Na 2 O 2 + Na Na 2 O;
г) Al + Br 2 AlBr 3 ;
д) Fe + O 2 Fe 3 O 4 (t );
е) Fe 3 O 4 + H 2 FeO + H 2 O (t );
ж) FeO + O 2 Fe 2 O 3 (t );
и) Fe 2 O 3 + CO Fe + CO 2 (t );
к) Cr + O 2 Cr 2 O 3 (t );
л) CrO 3 + NH 3 Cr 2 O 3 + H 2 O + N 2 (t );
м) Mn 2 O 7 + NH 3 MnO 2 + N 2 + H 2 O;
н) MnO 2 + H 2 Mn + H 2 O (t );
п) MnS + O 2 MnO 2 + SO 2 (t )
р) PbO 2 + CO Pb + CO 2 (t );
с) Cu 2 O + Cu 2 S Cu + SO 2 (t );
т) CuS + O 2 Cu 2 O +SO 2 (t );
у) Pb 3 O 4 + H 2 Pb + H 2 O (t ).

9.3. Экзотермические реакции. Энтальпия

Почему происходят химические реакции?
Для ответа на этот вопрос вспомним, почему отдельные атомы объединяются в молекулы, почему из изолированных ионов образуется ионный кристалл, почему при образовании электронной оболочки атома действует принцип наименьшей энергии. Ответ на все эти вопросы один и тот же: потому, что это энергетически выгодно. Это значит, что при протекании таких процессов выделяется энергия. Казалось бы, что и химические реакции должны протекать по этой же причине. Действительно, можно провести множество реакций, при протекании которых выделяется энергия. Энергия выделяется, как правило, в виде теплоты.

Если при экзотермической реакции теплота не успевает отводиться, то реакционная система нагревается.
Например, в реакции горения метана

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г)

выделяется столько теплоты, что метан используется как топливо.
Тот факт, что в этой реакции выделяется теплота, можно отразить в уравнении реакции:

СН 4(г) + 2О 2(г) = СО 2(г) + 2Н 2 О (г) + Q.

Это так называемое термохимическое уравнение . Здесь символ "+Q " означает, что при сжигании метана выделяется теплота. Эта теплота называется тепловым эффектом реакции .
Откуда же берется выделяющаяся теплота?
Вы знаете, что при химических реакциях рвутся и образуются химические связи. В данном случае рвутся связи между атомами углерода и водорода в молекулах СН 4 , а также между атомами кислорода в молекулах О 2 . При этом образуются новые связи: между атомами углерода и кислорода в молекулах СО 2 и между атомами кислорода и водорода в молекулах Н 2 О. Для разрыва связей нужно затратить энергию (см. "энергия связи" , "энергия атомизации"), а при образовании связей энергия выделяется. Очевидно, что, если "новые" связи более прочные, чем "старые" , то энергии выделится больше, чем поглотится. Разность между выделившейся и поглощенной энергией и составляет тепловой эффект реакции.
Тепловой эффект (количество теплоты) измеряется в килоджоулях, например:

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Такая запись означает, что 484 килоджоуля теплоты выделится, если два моля водорода прореагируют с одним молем кислорода и при этом образуется два моля газообразной воды (водяного пара).

Таким образом, в термохимических уравнениях коэффициенты численно равны количествам вещества реагентов и продуктов реакции .

От чего зависит тепловой эффект каждой конкретной реакции?
Тепловой эффект реакции зависит
а) от агрегатных состояний исходных веществ и продуктов реакции,
б) от температуры и
в) от того, происходит ли химическое превращение при постоянном объеме или при постоянном давлении.
Зависимость теплового эффекта реакции от агрегатного состояния веществ связана с тем, что процессы перехода из одного агрегатного состояния в другое (как и некоторые другие физические процессы) сопровождаются выделением или поглощением теплоты. Это также может быть выражено термохимическим уравнением. Пример – термохимическое уравнение конденсации водяного пара:

Н 2 О (г) = Н 2 О (ж) + Q.

В термохимических уравнениях, а при необходимости и в обычных химических уравнениях, агрегатные состояния веществ указываются с помощью буквенных индексов:
(г) – газ,
(ж) – жидкость,
(т) или (кр) – твердое или кристаллическое вещество.
Зависимость теплового эффекта от температуры связана с различиями в теплоемкостях исходных веществ и продуктов реакции.
Так как в результате экзотермической реакции при постоянном давлении всегда увеличивается объем системы, то часть энергии уходит на совершение работы по увеличению объема, и выделяющаяся теплота будет меньше, чем в случае протекания той же реакции при постоянном объеме.
Тепловые эффекты реакций обычно рассчитывают для реакций, протекающих при постоянном объеме при 25 ° С и обозначают символом Q o .
Если энергия выделяется только в виде теплоты, а химическая реакция протекает при постоянном объеме, то тепловой эффект реакции (Q V ) равен изменению внутренней энергии (D U ) веществ-участников реакции, но с противоположным знаком:

Q V = – U .

Под внутренней энергией тела понимают суммарную энергию межмолекулярных взаимодействий, химических связей, энергию ионизации всех электронов, энергию связей нуклонов в ядрах и все прочие известные и неизвестные виды энергии, " запасенные" этим телом. Знак " – " обусловлен тем, что при выделении теплоты внутренняя энергия уменьшается. То есть

U = – Q V .

Если же реакция протекает при постоянном давлении, то объем системы может изменяться. На совершение работы по увеличению объема также уходит часть внутренней энергии. В этом случае

U = – (Q P + A ) = –(Q P + P V ),

где Q p – тепловой эффект реакции, протекающей при постоянном давлении. Отсюда

Q P = – U – P V .

Величина, равная U + P V получила название изменение энтальпии и обозначается D H .

H = U + P V .

Следовательно

Q P = – H .

Таким образом, при выделении теплоты энтальпия системы уменьшается. Отсюда старое название этой величины: " теплосодержание" .
В отличие от теплового эффекта, изменение энтальпии характеризует реакцию независимо от того, протекает она при постоянном объеме или постоянном давлении. Термохимические уравнения, записанные с использованием изменения энтальпии, называются термохимическими уравнениями в термодинамической форме . При этом приводится значение изменения энтальпии в стандартных условиях (25 °С, 101,3 кПа), обозначаемое H о . Например:
2Н 2(г) + О 2(г) = 2Н 2 О (г) H о = – 484 кДж;
CaO (кр) + H 2 O (ж) = Сa(OH) 2(кр) H о = – 65 кДж.

Зависимость количества теплоты, выделяющейся в реакции (Q ) от теплового эффекта реакции (Q o) и количества вещества (n Б) одного из участников реакции (вещества Б – исходного вещества или продукта реакции) выражается уравнением:

Здесь Б – количество вещества Б, задаваемое коэффициентом перед формулой вещества Б в термохимическом уравнении.

Задача

Определите количество вещества водорода, сгоревшего в кислороде, если при этом выделилось 1694 кДж теплоты.

Решение

2Н 2(г) + О 2(г) = 2Н 2 О (г) + 484 кДж.

Q = 1694 кДж, 6.Тепловой эффект реакции взаимодействия кристаллического алюминия с газообразным хлором равен 1408 кДж. Запишите термохимическое уравнение этой реакции и определите массу алюминия, необходимого для получения 2816 кДж теплоты с использованием этой реакции.
7.Определите количество теплоты, выделяющейся при сгорании на воздухе 1 кг угля, содержащего 90 % графита, если тепловой эффект реакции горения графита в кислороде равна 394 кДж.

9.4. Эндотермические реакции. Энтропия

Кроме экзотермических реакций возможны реакции, при протекании которых теплота поглощается, и, если ее не подводить, то реакционная система охлаждается. Такие реакции называют эндотермическими .

Тепловой эффект таких реакций отрицательный. Например:
CaCO 3(кр) = CaO (кр) +CO 2(г) – Q,
2HgO (кр) = 2Hg (ж) + O 2(г) – Q,
2AgBr (кр) = 2Ag (кр) + Br 2(г) – Q.

Таким образом, энергия, выделяющаяся при образовании связей в продуктах этих и им подобных реакций, меньше, чем энергия, необходимая для разрыва связей в исходных веществах.
Что же является причиной протекания таких реакций, ведь энергетически они невыгодны?
Раз такие реакции возможны, значит существует какой-то неизвестный нам фактор, являющийся причиной их протекания. Попробуем его обнаружить.

Возьмем две колбы и заполним одну из них азотом (бесцветный газ), а другую – диоксидом азота (бурый газ) так, чтобы и давление, и температура в колбах были одинаковыми. Известно, что эти вещества между собой не вступают в химическую реакцию. Герметично соединим колбы горлышками и установим их вертикально, так, чтобы колба с более тяжелым диоксидом азота была внизу (рис. 9.1). Через некоторое время мы увидим, что бурый диоксид азота постепенно распространяется в верхнюю колбу, а бесцветный азот проникает в нижнюю. В результате газы смешиваются, и окраска содержимого колб становится одинаковой.
Что же заставляет газы смешиваться?
Хаотическое тепловое движение молекул.
Приведенный опыт показывает, что самопроизвольно, без какого бы то ни было нашего (внешнего) воздействия может протекать процесс, тепловой эффект которого равен нулю. А он действительно равен нулю, потому что химического взаимодействия в данном случае нет (химические связи не рвутся и не образуются), а межмолекулярное взаимодействие в газах ничтожно и практически одинаково.
Наблюдаемое явление представляет собой частный случай проявления всеобщего закона Природы, в соответствии с которым системы, состоящие из большого числа частиц, всегда стремятся к наибольшей неупорядоченности.
Мерой такой неупорядоченности служит физическая величина, называемая энтропией .

Таким образом,

чем БОЛЬШЕ ПОРЯДКА – тем МЕНЬШЕ ЭНТРОПИЯ,
чем МЕНЬШЕ ПОРЯДКА – тем БОЛЬШЕ ЭНТРОПИЯ.

Уравнения связи между энтропией (S ) и другими величинами изучаются в курсах физики и физической химии. Единица измерений энтропии [S ] = 1 Дж/К.
Энтропия возрастает при нагревании вещества и уменьшается при его охлаждении. Особенно сильно она возрастает при переходе вещества из твердого в жидкое и из жидкого в газообразное состояние.
Что же произошло в нашем опыте?
При смешении двух разных газов степень неупорядоченности возросла. Следовательно, возросла энтропия системы. При нулевом тепловом эффекте это и послужило причиной самопроизвольного протекания процесса.
Если теперь мы захотим разделить смешавшиеся газы, то нам придется совершить работу, то есть затратить для этого энергию. Самопроизвольно (за счет теплового движения) смешавшиеся газы никогда не разделятся!
Итак, мы с вами обнаружили два фактора, определяющих возможность протекания многих процессов, в том числе и химических реакций:
1) стремление системы к минимуму энергии (энергетический фактор ) и
2) стремление системы к максимуму энтропии (энтропийный фактор ).
Посмотрим теперь, как влияют на возможность протекания химических реакций различные комбинации этих двух факторов.
1. Если в результате предполагаемой реакции энергия продуктов реакции оказывается меньше, чем энергия исходных веществ, а энтропия больше (" под гору к большему беспорядку"), то такая реакция может протекать и будет экзотермической.
2. Если в результате предполагаемой реакции энергия продуктов реакции оказывается больше, чем энергия исходных веществ, а энтропия меньше (" в гору к большему порядку"), то такая реакция не идет.
3. Если в предполагаемой реакции энергетический и энтропийный факторы действуют в разные стороны (" под гору, но к большему порядку" или " в гору, но к большему беспорядку"), то без специальных расчетов сказать что-либо о возможности протекания такой реакции нельзя (" кто перетянет"). Подумайте, к какому из этих случаев относятся эндотермические реакции.
Возможность протекания химической реакции можно оценить, рассчитав изменение в ходе реакции физической величины, зависящей как от изменения энтальпии, так и от изменения энтропии в этой реакции. Такая физическая величина называется энергией Гиббса (в честь американского физикохимика XIX в. Джозайя Уилларда Гиббса).

G = H – T S

Условие самопроизвольного протекания реакции:

G < 0.

При низких температурах фактором, определяющим возможность протекания реакции в большей степени является энергетический фактор, а при высокой – энтропийный. Из приведенного уравнения, в частности, видно, почему не протекающие при комнатной температуре реакции разложения (энтропия увеличивается) начинают идти при повышенной температуре.

ЭНДОТЕРМИЧЕСКАЯ РЕАКЦИЯ, ЭНТРОПИЯ, ЭНЕРГЕТИЧЕСКИЙ ФАКТОР, ЭНТРОПИЙНЫЙ ФАКТОР, ЭНЕРГИЯ ГИББСА.
1.Приведите примеры известных вам эндотермических процессов.
2.Почему энтропия кристалла хлорида натрия меньше, чем энтропия расплава, полученного из этого кристалла?
3.Тепловой эффект реакции восстановления меди из ее оксида углем

2CuO (кр) + C (графит) = 2Cu (кр) + CO 2(г)

составляет –46 кДж. Запишите термохимическое уравнение и рассчитайте, какую энергию нужно затратить для получения 1 кг меди по такой реакции.
4.При прокаливании карбоната кальция было затрачено 300 кДж теплоты. При этом по реакции

CaCO 3(кр) = CaO (кр) + CO 2(г) – 179кДж

образовалось 24,6 л углекислого газа. Определите, какое количество теплоты было израсходовано бесполезно. Сколько граммов оксида кальция при этом образовалось?
5.При прокаливании нитрата магния образуется оксид магния, газообразный диоксид азота и кислород. Тепловой эффект реакции равен –510 кДж. Составьте термохимическое уравнение и определите, какое количество теплоты поглотилось, если выделилось 4,48 л кислорода. Какова масса разложившегося нитрата магния?