Броуновское движение

Ученицы 10 "В" класса

Онищук Екатерины

Понятие Броуновского движения

Закономерности Броуновского движения и применение в науке

Понятие Броуновского движения с точки зрения теории Хаоса

Движение бильярдного шарика

Интеграция детермированных фракталов и хаос

Понятие броуновского движения

Броуновское движение, правильнее брауновское движение, тепловое движение частиц вещества (размерами в нескольких мкм и менее), находящихся во взвешенном состоянии в жидкости или в газе частиц. Причиной броуновского движения является ряд не скомпенсированных импульсов, которые получает броуновская частица от окружающих ее молекул жидкости или газа. Открыто Р. Броуном (1773 - 1858) в 1827. Видимые только под микроскопом взвешенные частицы движутся независимо друг от друга и описывают сложные зигзагообразные траектории. Броуновское движение не ослабевает со временем и не зависит от химических свойств среды. Интенсивность Броуновского движения увеличивается с ростом температуры среды и с уменьшением её вязкости и размеров частиц.

Последовательное объяснение Броуновского движения было дано А. Эйнштейном и М. Смолуховским в 1905-06 на основе молекулярно-кинетической теории. Согласно этой теории, молекулы жидкости или газа находятся в постоянном тепловом движении, причём импульсы различных молекул неодинаковы по величине и направлению. Если поверхность частицы, помещенной в такую среду, мала, как это имеет место для броуновской частицы, то удары, испытываемые частицей со стороны окружающих её молекул, не будут точно компенсироваться. Поэтому в результате "бомбардировки" молекулами броуновская частица приходит в беспорядочное движение, меняя величину и направление своей скорости примерно 10 14 раз в сек. При наблюдении Броуновского движения фиксируется (см. Рис. 1) положение частицы через равные промежутки времени. Конечно, между наблюдениями частица движется не прямолинейно, но соединение последовательных положений прямыми линиями даёт условную картину движения.


Броуновское движение частицы гуммигута в воде (Рис.1)

Закономерности Броуновского движения

Закономерности Броуновского движения служат наглядным подтверждением фундаментальных положений молекулярно-кинетической теории. Общая картина Броуновского движения описывается законом Эйнштейна для среднего квадрата смещения частицы

вдоль любого направления х. Если за время между двумя измерениями происходит достаточно большое число столкновений частицы с молекулами, то пропорционально этому времени t: = 2D

Здесь D - коэффициент диффузии, который определяется сопротивлением, оказываемым вязкой средой движущейся в ней частице. Для сферических частиц радиуса, а он равен:

D = kT/6pha, (2)

где к - Больцмана постоянная, Т - абсолютная температура, h - динамическая вязкость среды. Теория Броунского движения объясняет случайные движения частицы действием случайных сил со стороны молекул и сил трения. Случайный характер силы означает, что её действие за интервал времени t 1 совершенно не зависит от действия за интервал t 2 , если эти интервалы не перекрываются. Средняя за достаточно большое время сила равна нулю, и среднее смещение броуновской частицы Dc также оказывается нулевым. Выводы теории Броуновского движения блестяще согласуются с экспериментом, формулы (1) и (2) были подтверждены измерениями Ж. Перрена и Т. Сведберга (1906). На основе этих соотношений были экспериментально определены постоянная Больцмана и Авогадро число в согласии с их значениями, полученными др. методами. Теория Броуновского движения сыграла важную роль в обосновании статистической механики. Помимо этого, она имеет и практическое значение. Прежде всего, Броуновское движение ограничивает точность измерительных приборов. Например, предел точности показаний зеркального гальванометра определяется дрожанием зеркальца, подобно броуновской частице бомбардируемого молекулами воздуха. Законами Броуновского движения определяется случайное движение электронов, вызывающее шумы в электрических цепях. Диэлектрические потери в диэлектриках объясняются случайными движениями молекул-диполей, составляющих диэлектрик. Случайные движения ионов в растворах электролитов увеличивают их электрическое сопротивление.

Понятие Броуновского движения с точки зрения теории Хаоса

Броуновское движение - это, например, случайное и хаотическое движение частичек пыли, взвешенных в воде. Этот тип движения, возможно, является аспектом фрактальной геометрии, имеющий с наибольшее практическое использование. Случайное Броуновское движение производит частотную диаграмму, которая может быть использована для предсказания вещей, включающих большие количества данных и статистики. Хорошим примером являются цены на шерсть, которые Мандельброт предсказал при помощи Броуновского движения.

Частотные диаграммы, созданные при построении графика на основе Броуновских чисел так же можно преобразовать в музыку. Конечно, этот тип фрактальной музыки совсем не музыкален и может действительно утомить слушателя.

Занося на график случайно Броуновские числа, можно получить Пылевой Фрактал наподобие того, что приведен здесь в качестве примера. Кроме применения Броуновского движения для получения фракталов из фракталов, оно может использоваться и для создания ландшафтов. Во многих фантастических фильмах, как, например Star Trek техника Броуновского движения была использована для создания инопланетных ландшафтов таких, как холмы и топологические картины высокогорных плато.

Эти техники очень эффективны, и их можно найти в книге Мандельброта Фрактальная геометрия природы. Мандельброт использовал Броуновские линии для создания фрактальных линий побережья и карт островов (которые на самом деле были просто в случайном порядке изображенные точки) с высоты птичьего полета.

ДВИЖЕНИЕ БИЛЛИАРДНОГО ШАРИКА

Любой, кто когда-либо брал в руки кий для бильярда, знает, что ключ к игре - точность. Малейшая ошибка в угле начального удара может быстро привести к огромной ошибке в положении шарика всего после нескольких столкновений. Эта чувствительность к начальным условиям называемая хаосом возникает непреодолимым барьером для любого, кто надеется предсказать или управлять траекторией движения шарика больше чем после шести или семи столкновений. И не стоит думать, что проблема заключается в пыли на столе или в нетвердой руке. Фактически, если вы используете ваш компьютер для построения модели, содержащей бильярдный стол, не обладающий ни каким трением, нечеловеческим контролем точности позиционирования кия, вам все равно не удастся предсказывать траекторию шарика достаточно долго!

Насколько долго? Это зависит частично от точности вашего компьютера, но в большей степени от формы стола. Для совершенно круглого стола, можно просчитать приблизительно до 500 положений столкновений с ошибкой около 0.1 процента. Но стоит изменить форму стола так, чтобы она стала хотя бы немножко неправильной (овальной), и непредсказуемость траектории может превышать 90 градусов уже после 10 столкновений! Единственный путь получить картинку общего поведения бильярдного шарика, отскакивающего от чистого стола - это изобразить угол отскока или длину дуги соответствующую каждому удару. Здесь приведены два последовательных увеличения такой фазово-пространственной картины.

Каждая отдельная петля или область разброса точек представляет поведение шарика, происходящее от одного набора начальных условий. Область картинки, на которой отображаются результаты какого-то одного конкретного эксперимента, называется аттракторной областью для данного набора начальных условий. Как можно видеть форма стола, использованного для этих экспериментов является, основной частью аттракторных областей, которые повторяются последовательно в уменьшающемся масштабе. Теоретически, такое самоподобие должно продолжаться вечно и если мы будем увеличивать рисунок все больше и больше, мы бы получали все те же формы. Это называется очень популярным сегодня, словом фрактал.

ИНТЕГРАЦИЯ ДЕТЕРМИНИРОВАННЫХ ФРАКТАЛОВ И ХАОС

Из рассмотренных примеров детерминистских фракталов можно увидеть, что они не проявляют никакого хаотического поведения и что они на самом деле очень даже предсказуемы. Как известно, теория хаоса использует фрактал для того, чтобы воссоздать или найти закономерности с целью предсказания поведения многих систем в природе, таких как, например, проблема миграции птиц.

Теперь давайте посмотрим, как это в действительности происходит. Используя фрактал, называемый Деревом Пифагора, не рассматриваемого здесь (который, кстати, не изобретен Пифагором и никак не связан с теоремой Пифагора) и Броуновского движения (которое хаотично), давайте, попытаемся сделать имитацию реального дерева. Упорядочение листьев и веток на дереве довольно сложно и случайно и, вероятно не является чем-то достаточно простым, что может эмулировать короткая программа из 12 строк.

Для начала нужно сгенерировать Дерево Пифагора (слева). Необходимо сделать ствол потолще. На этой стадии Броуновское движение не используется. Вместо этого, каждый отрезок линии теперь стал линией симметрии прямоугольника, который становится стволом, и веток снаружи.

Броуновское движение - беспорядочное движение микроскопических видимых, взвешенных в жидкости или газе частиц твердого вещества, вызываемое тепловым движением частиц жидкости или газа. Броуновское движение никогда не прекращается. Броуновское движение связано с тепловым движением, но не следует смешивать эти понятия. Броуновское движение является следствием и свидетельством существования теплового движения.

Броуновское движение - наиболее наглядное экспериментальное подтверждение представлений молекулярно-кинетической теории о хаотическом тепловом движении атомов и молекул. Если промежуток наблюдения достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то средний квадрат проекции её смещения на какую-либо ось (в отсутствие других внешних сил) пропорционален времени.
При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших времен). Формула для коэффициента D основана на применении закона Стокса для гидродинамического сопротивления движению сферы радиусом а в вязкой жидкости. Соотношения для и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная NА. Кроме поступательного Броуновского движения, существует также вращательное Броуновского движение - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращательного Броуновского движения среднее квадратичное угловое смещение частицы пропорционально времени наблюдения. Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное Броуновское движение.

Сущность явления

Броуновское движение происходит из-за того, что все жидкости и газы состоят из атомов или молекул - мельчайших частиц, которые находятся в постоянном хаотическом тепловом движении, и потому непрерывно толкают броуновскую частицу с разных сторон. Было установлено, что крупные частицы с размерами более 5 мкм в броуновском движении практически не участвуют (они неподвижны или седиментируют), более мелкие частицы (менее 3 мкм) двигаются поступательно по весьма сложным траекториям или вращаются. Когда в среду погружено крупное тело, то толчки, происходящие в огромном количестве, усредняются и формируют постоянное давление. Если крупное тело окружено средой со всех сторон, то давление практически уравновешивается, остаётся только подъёмная сила Архимеда - такое тело плавно всплывает или тонет. Если же тело мелкое, как броуновская частица, то становятся заметны флуктуации давления, которые создают заметную случайно изменяющуюся силу, приводящую к колебаниям частицы. Броуновские частицы обычно не тонут и не всплывают, а находятся в среде во взвешенном состоянии.

Теория броуновского движения

В 1905 году Альбертом Эйнштейном была создана молекулярно-кинетическая теория для количественного описания броуновского движения.В частности, он вывел формулу для коэффициента диффузии сферических броуновских частиц:

где D - коэффициент диффузии, R - универсальная газовая постоянная, T - абсолютная температура, N A - постоянная Авогадро, а - радиус частиц, ξ - динамическая вязкость.

Броуновское движение как немарковский
случайный процесс

Хорошо разработанная за последнее столетие теория броуновского движения является приближенной. И хотя в большинстве практически важных случаев существующая теория даёт удовлетворительные результаты, в некоторых случаях она может потребовать уточнения. Так, экспериментальные работы, проведённые в начале XXI века в Политехническом университете Лозанны, Университете Техаса и Европейской молекулярно-биологической лаборатории в Гейдельберге (под руководством С. Дженей) показали отличие поведения броуновской частицы от теоретически предсказываемого теорией Эйнштейна - Смолуховского, что было особенно заметным при увеличении размеров частиц. Исследования затрагивали также анализ движения окружающих частиц среды и показали существенное взаимное влияние движения броуновской частицы и вызываемое ею движение частиц среды друг на друга, то есть наличие «памяти» у броуновской частицы, или, другими словами, зависимость её статистических характеристик в будущем от всей предыстории её поведения в прошлом. Данный факт не учитывался в теории Эйнштейна - Смолуховского.
Процесс броуновского движения частицы в вязкой среде, вообще говоря, относится к классу немарковских процессов, и для более точного его описания необходимо использование интегральных стохастических уравнений.

Шотландский ботаник Роберт Броун (иногда его фамилию транскрибируют как Браун) еще при жизни как лучший знаток растений получил титул «князя ботаников». Он сделал много замечательных открытий. В 1805 после четырехлетней экспедиции в Австралию привез в Англию около 4000 видов не известных ученым австралийских растений и много лет потратил на их изучение. Описал растения, привезенные из Индонезии и Центральной Африки. Изучал физиологию растений, впервые подробно описал ядро растительной клетки. Петербургская Академия наук сделала его своим почетным членом. Но имя ученого сейчас широко известно вовсе не из-за этих работ.

В 1827 Броун проводил исследования пыльцы растений. Он, в частности, интересовался, как пыльца участвует в процессе оплодотворения. Как-то он разглядывал под микроскопом выделенные из клеток пыльцы североамериканского растения Clarkia pulchella (кларкии хорошенькой) взвешенные в воде удлиненные цитоплазматические зерна. Неожиданно Броун увидел, что мельчайшие твердые крупинки, которые едва можно было разглядеть в капле воды, непрерывно дрожат и передвигаются с места на место. Он установил, что эти движения, по его словам, «не связаны ни с потоками в жидкости, ни с ее постепенным испарением, а присущи самим частичкам».

Наблюдение Броуна подтвердили другие ученые. Мельчайшие частички вели себя, как живые, причем «танец» частиц ускорялся с повышением температуры и с уменьшением размера частиц и явно замедлялся при замене воды более вязкой средой. Это удивительное явление никогда не прекращалось: его можно было наблюдать сколь угодно долго. Поначалу Броун подумал даже, что в поле микроскопа действительно попали живые существа, тем более что пыльца – это мужские половые клетки растений, однако так же вели частички из мертвых растений, даже из засушенных за сто лет до этого в гербариях. Тогда Броун подумал, не есть ли это «элементарные молекулы живых существ», о которых говорил знаменитый французский естествоиспытатель Жорж Бюффон (1707–1788), автор 36-томной Естественной истории . Это предположение отпало, когда Броун начал исследовать явно неживые объекты; сначала это были очень мелкие частички угля, а также сажи и пыли лондонского воздуха, затем тонко растертые неорганические вещества: стекло, множество различных минералов. «Активные молекулы» оказались повсюду: «В каждом минерале, – писал Броун, – который мне удавалось измельчить в пыль до такой степени, чтобы она могла в течение какого-то времени быть взвешенной в воде, я находил, в больших или меньших количествах, эти молекулы».

Надо сказать, что у Броуна не было каких-то новейших микроскопов. В своей статье он специально подчеркивает, что у него были обычные двояковыпуклые линзы, которыми он пользовался в течение нескольких лет. И далее пишет: «В ходе всего исследования я продолжал использовать те же линзы, с которыми начал работу, чтобы придать больше убедительности моим утверждениям и чтобы сделать их как можно более доступными для обычных наблюдений».

Сейчас чтобы повторить наблюдение Броуна достаточно иметь не очень сильный микроскоп и рассмотреть с его помощью дым в зачерненной коробочке, освещенный через боковое отверстие лучом интенсивного света. В газе явление проявляется значительно ярче, чем в жидкости: видны рассеивающие свет маленькие клочки пепла или сажи (в зависимости от источника дыма), которые непрерывно скачут туда и сюда.

Как это часто бывает в науке, спустя многие годы историки обнаружили, что еще в 1670 изобретатель микроскопа голландец Антони Левенгук , видимо, наблюдал аналогичное явление, но редкость и несовершенство микроскопов, зачаточное состояние молекулярного учения в то время не привлекли внимания к наблюдению Левенгука, поэтому открытие справедливо приписывают Броуну, который впервые подробно его изучил и описал.

Броуновское движение и атомно-молекулярная теория.

Наблюдавшееся Броуном явление быстро стало широко известным. Он сам показывал свои опыты многочисленным коллегам (Броун перечисляет два десятка имен). Но объяснить это загадочное явление, которое назвали «броуновским движением», не смог ни сам Броун, ни многие другие ученые в течение многих лет. Перемещения частиц были совершенно беспорядочны: зарисовки их положения, сделанные в разные моменты времени (например, каждую минуту) не давали на первый взгляд никакой возможности найти в этих движениях какую-либо закономерность.

Объяснение броуновского движения (как назвали это явление) движением невидимых молекул было дано только в последней четверти 19 в., но далеко не сразу было принято всеми учеными. В 1863 преподаватель начертательной геометрии из Карлсруэ (Германия) Людвиг Кристиан Винер (1826–1896) предположил, что явление связано с колебательными движениями невидимых атомов. Это было первое, хотя и очень далекое от современного, объяснение броуновского движения свойствами самих атомов и молекул. Важно, что Винер увидел возможность с помощью этого явления проникнуть в тайны строения материи. Он впервые попытался измерить скорость перемещения броуновских частиц и ее зависимость от их размера. Любопытно, что в 1921 в Докладах Национальной Академии наук США была опубликована работа о броуновском движении другого Винера – Норберта, знаменитого основателя кибернетики.

Идеи Л.К.Винера были приняты и развиты рядом ученых – Зигмундом Экснером в Австрии (а спустя 33 года – и его сыном Феликсом), Джованни Кантони в Италии, Карлом Вильгельмом Негели в Германии, Луи Жоржем Гуи во Франции, тремя бельгийскими священниками-иезуитами Карбонелли, Дельсо и Тирьоном и другими. В числе этих ученых был и знаменитый впоследствии английский физик и химик Уильям Рамзай. Постепенно становилось понятным, что мельчайшие крупинки вещества испытывают со всех сторон удары еще более мелких частиц, которые в микроскоп уже не видны – как не видны с берега волны, качающие далекую лодку, тогда как движения самой лодки видны вполне отчетливо. Как писали в одной из статей 1877, «...закон больших чисел не сводит теперь эффект соударений к среднему равномерному давлению, их равнодействующая уже не будет равна нулю, а будет непрерывно изменять свое направление и свою величину».

Качественно картина была вполне правдоподобной и даже наглядной. Примерно так же должны перемещаться маленькая веточка или жучок, которых толкают (или тянут) в разные стороны множество муравьев. Эти более мелкие частицы на самом деле были в лексиконе ученых, только их никто никогда не видел. Называли их молекулами; в переводе с латинского это слово и означает «маленькая масса». Поразительно, но именно такое объяснение дал похожему явлению римский философ Тит Лукреций Кар (ок. 99–55 до н.э.) в своей знаменитой поэме О природе вещей . В ней мельчайшие невидимые глазом частицы он называет «первоначалами» вещей.

Первоначала вещей сначала движутся сами,
Следом за ними тела из мельчайшего их сочетанья,
Близкие, как бы сказать, по силам к началам первичным,
Скрыто от них получая толчки, начинают стремиться,
Сами к движенью затем побуждая тела покрупнее.
Так, исходя от начал, движение мало-помалу
Наших касается чувств, и становится видимым также
Нам и в пылинках оно, что движутся в солнечном свете,
Хоть незаметны толчки, от которых оно происходит...

Впоследствии оказалось, что Лукреций ошибался: невооруженным глазом наблюдать броуновское движение невозможно, а пылинки в солнечном луче, который проник в темную комнату, «пляшут» из-за вихревых движений воздуха. Но внешне оба явления имеют некоторое сходство. И только в 19 в. многим ученым стало очевидно, что движение броуновских частиц вызвано беспорядочными ударами молекул среды. Движущиеся молекулы наталкиваются на пылинки и другие твердые частицы, которые есть в воде. Чем выше температура, тем быстрее движение. Если пылинка велика, например, имеет размер 0,1 мм (диаметр в миллион раз больше, чем у молекулы воды), то множество одновременных ударов по ней со всех сторон взаимно уравновешиваются и она их практически не «чувствует» – примерно так же, как кусок дерева размером с тарелку не «почувствует» усилий множества муравьев, которые будут тянуть или толкать его в разные стороны. Если же пылинка сравнительно невелика, она под действием ударов окружающих молекул будет двигаться то в одну, то в другую сторону.

Броуновские частицы имеют размер порядка 0,1–1 мкм, т.е. от одной тысячной до одной десятитысячной доли миллиметра, потому-то Броуну и удалось разглядеть их перемещение, что он рассматривал крошечные цитоплазматические зернышки, а не саму пыльцу (о чем часто ошибочно пишут). Дело в том, что клетки пыльцы слишком большие. Так, у пыльцы луговых трав, которая переносится ветром и вызывает аллергические заболевания у людей (поллиноз), размер клеток обычно находится в пределах 20 – 50 мкм, т.е. они слишком велики для наблюдения броуновского движения. Важно отметить также, что отдельные передвижения броуновской частицы происходят очень часто и на очень малые расстояния, так что увидеть их невозможно, а под микроскопом видны перемещения, происшедшие за какой-то промежуток времени.

Казалось бы, сам факт существования броуновского движения однозначно доказывал молекулярное строение материи, однако даже в начале 20 в. были ученые, и в их числе – физики и химики, которые не верили в существование молекул. Атомно-молекулярная теория лишь медленно и с трудом завоевывала признание. Так, крупнейший французский химик-органик Марселен Бертло (1827–1907) писал: «Понятие молекулы, с точки зрения наших знаний, неопределенно, в то время как другое понятие – атом – чисто гипотетическое». Еще определеннее высказался известный французский химик А.Сент-Клер Девилль (1818–1881): «Я не допускаю ни закона Авогадро , ни атома, ни молекулы, ибо я отказываюсь верить в то, что не могу ни видеть, ни наблюдать». А немецкий физикохимик Вильгельм Оствальд (1853–1932), лауреат Нобелевской премии, один из основателей физической химии, еще в начале 20 в. решительно отрицал существование атомов. Он ухитрился написать трехтомный учебник химии, в котором слово «атом» ни разу даже не упоминается. Выступая 19 апреля 1904 с большим докладом в Королевском Институте перед членами английского Химического общества, Оствальд пытался доказать, что атомов не существует, а «то, что мы называем материей, является лишь совокупностью энергий, собранной воедино в данном месте».

Но даже те физики, которые принимали молекулярную теорию, не могли поверить, что таким простым способом доказывается справедливость атомно-молекулярного учения, поэтому выдвигались самые разнообразные альтернативные причины, чтобы объяснить явление. И это вполне в духе науки: пока причина какого-либо явления не выявлена однозначно, можно (и даже необходимо) предполагать различные гипотезы, которые следует по возможности проверять экспериментально или теоретически. Так, еще в 1905 в Энциклопедическом словаре Брокгауза и Ефрона была опубликована небольшая статья петербургского профессора физики Н.А.Гезехуса, учителя знаменитого академика А.Ф.Иоффе . Гезехус писал, что, по мнению некоторых ученых, броуновское движение вызывается «проходящими через жидкость световыми или тепловыми лучами», сводится к «простым потокам внутри жидкости, не имеющим ничего общего с движениями молекул», причем эти потоки могут вызываться «испарением, диффузией и другими причинами». Ведь уже было известно, что очень похожее движение пылинок в воздухе вызывается именно вихревыми потоками. Но объяснение, приведенное Гезехусом, легко можно было опровергнуть экспериментально: если в сильный микроскоп разглядывать две броуновские частички, находящиеся очень близко друг к другу, то их перемещения окажутся совершенно независимыми. Если бы эти движения вызывались какими-либо потоками в жидкости, то такие соседние частицы двигались бы согласованно.

Теория броуновского движения.

В начале 20 в. большинство ученых понимали молекулярную природу броуновского движения. Но все объяснения оставались чисто качественными, никакая количественная теория не выдерживала экспериментальной проверки. Кроме того, сами экспериментальные результаты были неотчетливы: фантастическое зрелище безостановочно мечущихся частиц гипнотизировало экспериментаторов, и какие именно характеристики явления нужно измерять, они не знали.

Несмотря на кажущийся полный беспорядок, случайные перемещения броуновских частиц оказалось все же возможным описать математической зависимостью. Впервые строгое объяснение броуновского движения дал в 1904 польский физик Мариан Смолуховский (1872–1917), который в те годы работал в Львовском университете. Одновременно теорию этого явления разрабатывал Альберт Эйнштейн (1879–1955), мало кому известный тогда эксперт 2-го класса в Патентном бюро швейцарского города Берна. Его статья, опубликованная в мае 1905 в немецком журнале Annalen der Physik, называлась О движении взвешенных в покоящейся жидкости частиц, требуемом молекулярно-кинетической теорией теплоты . Этим названием Эйнштейн хотел показать, что из молекулярно-кинетической теории строения материи с необходимостью вытекает существование случайного движения мельчайших твердых частиц в жидкостях.

Любопытно, что в самом начале этой статьи Эйнштейн пишет, что знаком с самим явлением, хотя и поверхностно: «Возможно, что рассматриваемые движения тождественны с так называемым броуновским молекулярным движением, однако доступные мне данные относительно последнего столь неточны, что я не мог составить об этом определенного мнения». А спустя десятки лет, уже на склоне жизни, Эйнштейн написал в свои воспоминаниях нечто иное – что вообще не знал о броуновском движении и фактически заново «открыл» его чисто теоретически: «Не зная, что наблюдения над „броуновским движением" давно известны, я открыл, что атомистическая теория приводит к существованию доступного наблюдению движения микроскопических взвешенных частиц». Как бы то ни было, а заканчивалась теоретическая статья Эйнштейна прямым призывом к экспериментаторам проверить его выводы на опыте: «Если бы какому-либо исследователю удалось вскоре ответить на поднятые здесь вопросы!» – таким необычным восклицанием заканчивает он свою статью.

Ответ на страстный призыв Эйнштейна не заставил себя долго ждать.

В соответствии с теорией Смолуховского-Эйнштейна, среднее значение квадрата смещения броуновской частицы (s 2) за время t прямо пропорционально температуре Т и обратно пропорционально вязкости жидкости h , размеру частицы r и постоянной Авогадро

N A: s 2 = 2RTt /6ph rN A ,

где R – газовая постоянная. Так, если за 1 мин частица диаметром 1 мкм сместится на 10 мкм, то за 9 мин – на 10 = 30 мкм, за 25 мин – на 10 = 50 мкм и т.д. В аналогичных условиях частица диаметром 0,25 мкм за те же отрезки времени (1, 9 и 25 мин) сместится соответственно на 20, 60 и 100 мкм, так как = 2. Важно, что в приведенную формулу входит постоянная Авогадро, которую таким образом, можно определить путем количественных измерений перемещения броуновской частицы, что и сделал французский физик Жан Батист Перрен (1870–1942).

В 1908 Перрен начал количественные наблюдения за движением броуновских частиц под микроскопом. Он использовал изобретенный в 1902 ультрамикроскоп, который позволял обнаруживать мельчайшие частицы благодаря рассеянию на них света от мощного бокового осветителя. Крошечные шарики почти сферической формы и примерно одинакового размера Перрен получал из гуммигута – сгущенного сока некоторых тропических деревьев (он используется и как желтая акварельная краска). Эти крошечные шарики были взвешены в глицерине, содержащем 12% воды; вязкая жидкость препятствовала появлению в ней внутренних потоков, которые смазали бы картину. Вооружившись секундомером, Перрен отмечал и потом зарисовывал (конечно, в сильно увеличенном масштабе) на разграфленном листе бумаги положение частиц через равные интервалы, например, через каждые полминуты. Соединяя полученные точки прямыми, он получал замысловатые траектории, некоторые из них приведены на рисунке (они взяты из книги Перрена Атомы , опубликованной в 1920 в Париже). Такое хаотичное, беспорядочное движение частиц приводит к тому, что перемещаются они в пространстве довольно медленно: сумма отрезков намного больше смещения частицы от первой точки до последней.

Последовательные положения через каждые 30 секунд трех броуновских частиц – шариков гуммигута размером около 1 мкм. Одна клетка соответствует расстоянию 3 мкм. Если бы Перрен смог определять положение броуновских частиц не через 30, а через 3 секунды, то прямые между каждыми соседними точками превратились бы в такую же сложную зигзагообразную ломаную линию, только меньшего масштаба.

Используя теоретическую формулу и свои результаты, Перрен получил достаточно точное для того времени значение числа Авогадро: 6,8 . 10 23 . Перрен исследовал также с помощью микроскопа распределение броуновских частиц по вертикали (см . АВОГАДРО ЗАКОН) и показал, что, несмотря на действие земного притяжения, они остаются в растворе во взвешенном состоянии. Перрену принадлежат и другие важные работы. В 1895 он доказал, что катодные лучи – это отрицательные электрические заряды (электроны), в 1901 впервые предложил планетарную модель атома. В 1926 он был удостоен Нобелевской премии по физике.

Результаты, полученные Перреном, подтвердили теоретические выводы Эйнштейна. Это произвело сильное впечатление. Как написал через много лет американский физик А.Пайс, «не перестаешь удивляться этому результату, полученному таким простым способом: достаточно приготовить взвесь шариков, размер которых велик по сравнению с размером простых молекул, взять секундомер и микроскоп, и можно определить постоянную Авогадро!» Можно удивляться и другому: до сих пор в научных журналах (Nature, Science, Journal of Chemical Education) время от времени появляются описания новых экспериментов по броуновскому движению! После публикации результатов Перрена бывший противник атомизма Оствальд признался, что «совпадение броуновского движения с требованиями кинетической гипотезы... дает теперь право самому осторожному ученому говорить об экспериментальном доказательстве атомистической теории материи. Таким образом, атомистическая теория возведена в ранг научной, прочно обоснованной теории». Ему вторит французский математик и физик Анри Пуанкаре : «Блестящее определение числа атомов Перреном завершило триумф атомизма... Атом химиков стал теперь реальностью».

Броуновское движение и диффузия.

Перемещение броуновских частиц внешне весьма напоминает перемещение отдельных молекул в результате их теплового движения. Такое перемещение называется диффузией. Еще до работ Смолуховского и Эйнштейна были установлены законы движения молекул в наиболее простом случае газообразного состояния вещества. Оказалось, что молекулы в газах движутся очень быстро – со скоростью пули, но далеко «улететь» не могут, так как очень часто сталкиваются с другими молекулами. Например, молекулы кислорода и азота в воздухе, двигаясь в среднем со скоростью примерно 500 м/с, испытывают каждую секунду более миллиарда столкновений. Поэтому путь молекулы, если бы могли за ним проследить, представлял бы собой сложную ломаную линию. Подобную же траекторию описывают и броуновские частицы, если фиксировать их положение через определенные промежутки времени. И диффузия, и броуновское движение являются следствием хаотичного теплового движения молекул и потому описываются сходными математическими зависимостями. Различие состоит в том, что молекулы в газах движутся по прямой, пока не столкнутся с другими молекулами, после чего меняют направление движения. Броуновская же частица никаких «свободных полетов», в отличие от молекулы, не совершает, а испытывает очень частые мелкие и нерегулярные «дрожания», в результате которых она хаотически смещается то в одну, то в другую сторону. Как показали расчеты, для частицы размером 0,1 мкм одно перемещение происходит за три миллиардные доли секунды на расстояние всего 0,5 нм (1 нм = 0,001 мкм). По меткому выражению одного автора, это напоминает перемещения пустой банки из-под пива на площади, где собралась толпа людей.

Диффузию наблюдать намного проще, чем броуновское движение, поскольку для этого не нужен микроскоп: наблюдаются перемещения не отдельных частиц, а огромной их массы, нужно только обеспечить, чтобы на диффузию не накладывалось конвекция – перемешивание вещества в результате вихревых потоков (такие потоки легко заметить, капнув каплю окрашенного раствора, например, чернил, в стакан с горячей водой).

Диффузию удобно наблюдать в густых гелях. Такой гель можно приготовить, например, в баночке из-под пенициллина, приготовив в ней 4–5%-ный раствор желатина. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при перемешивании, опустив баночку в горячую воду. После охлаждения получается нетекучий гель в виде прозрачной слегка мутноватой массы. Если с помощью острого пинцета осторожно ввести в центр этой массы небольшой кристаллик перманганата калия («марганцовки»), то кристаллик останется висеть в том месте, где его оставили, так как гель не дает ему упасть. Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый цвет шарик, со временем он становится все больше и больше, пока стенки баночки не исказят его форму. Такой же результат можно получить и с помощью кристаллика медного купороса, только в этом случае шарик получится не фиолетовым, а голубым.

Почему получился шарик, понятно: ионы MnO 4 – , образующиеся при растворении кристалла, переходят в раствор (гель – это, в основном, вода) и в результате диффузии равномерно движутся во все стороны, при этом сила тяжести практически не влияет на скорость диффузии. Диффузия в жидкости идет очень медленно: чтобы шарик вырос на несколько сантиметров, потребуется много часов. В газах диффузия идет намного быстрее, но всё равно если бы воздух не перемешивался, то запах духов или нашатырного спирта распространялся в комнате часами.

Теория броуновского движения: случайные блуждания.

Теория Смолуховского – Эйнштейна объясняет закономерности и диффузии, и броуновского движения. Можно рассматривать эти закономерности на примере диффузии. Если скорость молекулы равна u , то, двигаясь по прямой, она за время t пройдет расстояние L = ut , но из-за столкновений с другими молекулами данная молекула не движется по прямой, а непрерывно изменяет направление своего движения. Если бы можно было зарисовать путь молекулы, он принципиально ничем бы не отличался от рисунков, полученных Перреном. Из таких рисунков видно, что из-за хаотичного движения молекула смещается на расстояние s , значительно меньшее, чем L . Эти величины связаны соотношением s = , где l – расстояние, которое молекула пролетает от одного столкновения до другого, средняя длина свободного пробега. Измерения показали, что для молекул воздуха при нормальном атмосферном давлении l ~ 0,1 мкм, значит, при скорости 500 м/с молекула азота или кислорода пролетит за 10 000 секунд (меньше трех часов) расстояние L = 5000 км, а сместится от первоначального положения всего лишь на s = 0,7 м (70 см), поэтому вещества за счет диффузии передвигаются так медленно даже в газах.

Путь молекулы в результате диффузии (или путь броуновской частицы) называется случайным блужданием (по-английски random walk). Остряки-физики переиначили это выражение в drunkard"s walk – «путь пьяницы». Действительно, перемещение частицы от одного положения до другого (или путь молекулы, претерпевающей множество столкновений) напоминает движение нетрезвого человека. Более того, эта аналогия позволяет также довольно просто вывести основное уравнение такого процесса – на примере одномерного движения, которое легко обобщить на трехмерное. Делают это так.

Пусть подвыпивший матрос вышел поздно вечером из кабачка и направился вдоль улицы. Пройдя путь l до ближайшего фонаря, он отдохнул и пошел... либо дальше, до следующего фонаря, либо назад, к кабачку – ведь он не помнит, откуда пришел. Спрашивается, уйдет он когда-нибудь от кабачка, или так и будет бродить около него, то отдаляясь, то приближаясь к нему? (В другом варианте задачи говорится, что на обоих концах улицы, где кончаются фонари, находятся грязные канавы, и спрашивается, удастся ли матросу не свалиться в одну из них). Интуитивно кажется, что правилен второй ответ. Но он неверен: оказывается, матрос будет постепенно все более удаляться от нулевой точки, хотя и намного медленнее, чем если бы он шел только в одну сторону. Вот как это можно доказать.

Пройдя первый раз до ближайшего фонаря (вправо или влево), матрос окажется на расстоянии s 1 = ± l от исходной точки. Так как нас интересует только его удаление от этой точки, но не направление, избавимся от знаков, возведя это выражение в квадрат: s 1 2 = l 2. Спустя какое-то время, матрос, совершив уже N «блужданий», окажется на расстоянии

s N = от начала. А пройдя еще раз (в одну из сторон) до ближайшего фонаря, – на расстоянии s N +1 = s N ± l , или, используя квадрат смещения, s 2 N +1 = s 2 N ± 2s N l + l 2. Если матрос много раз повторит это перемещение (от N до N + 1), то в результате усреднения (он с равной вероятностью проходит N -ый шаг вправо или влево), член ± 2s N l сократится, так что s 2 N +1 = s 2 N + l 2> (угловыми скобками обозначено усредненная величина).L = 3600 м = 3,6 км, тогда как смещение от нулевой точки за то же время будет равно всего s = = 190 м. За три часа он пройдет L = 10,8 км, а сместится на s = 330 м и т.д.

Произведение u l в полученной формуле можно сопоставить с коэффициентом диффузии, который, как показал ирландский физик и математик Джордж Габриел Стокс (1819–1903), зависит от размера частицы и вязкости среды. На основании подобных соображений Эйнштейн и вывел свое уравнение.

Теория броуновского движения в реальной жизни.

Теория случайных блужданий имеет важное практическое приложение. Говорят, что в отсутствие ориентиров (солнце, звезды, шум шоссе или железной дороги и т.п.) человек бродит в лесу, по полю в буране или в густом тумане кругами, все время возвращаясь на прежнее место. На самом деле он ходит не кругами, а примерно так, как движутся молекулы или броуновские частицы. На прежнее место он вернуться может, но только случайно. А вот свой путь он пересекает много раз. Рассказывают также, что замерзших в пургу людей находили «в каком-нибудь километре» от ближайшего жилья или дороги, однако на самом деле у человека не было никаких шансов пройти этот километр, и вот почему.

Чтобы рассчитать, насколько сместится человек в результате случайных блужданий, надо знать величину l , т.е. расстояние, которое человек может пройти по прямой, не имея никаких ориентиров. Эту величину с помощью студентов-добровольцев измерил доктор геолого-минералогических наук Б.С.Горобец. Он, конечно, не оставлял их в дремучем лесу или на заснеженном поле, все было проще – студента ставили в центре пустого стадиона, завязывали ему глаза и просили в полной тишине (чтобы исключить ориентирование по звукам) пройти до конца футбольного поля. Оказалось, что в среднем студент проходил по прямой всего лишь около 20 метров (отклонение от идеальной прямой не превышало 5°), а потом начинал все более отклоняться от первоначального направления. В конце концов, он останавливался, далеко не дойдя до края.

Пусть теперь человек идет (вернее, блуждает) в лесу со скоростью 2 километра в час (для дороги это очень медленно, но для густого леса – очень быстро), тогда если величина l равна 20 метрам, то за час он пройдет 2 км, но сместится всего лишь на 200 м, за два часа – примерно на 280 м, за три часа – 350 м, за 4 часа – 400 м и т. д. А двигаясь по прямой с такой скоростью, человек за 4 часа прошел бы 8 километров, поэтому в инструкциях по технике безопасности полевых работ есть такое правило: если ориентиры потеряны, надо оставаться на месте, обустраивать убежище и ждать окончания ненастья (может выглянуть солнце) или помощи. В лесу же двигаться по прямой помогут ориентиры – деревья или кусты, причем каждый раз надо держаться двух таких ориентиров – одного спереди, другого сзади. Но, конечно, лучше всего брать с собой компас...

Илья Леенсон

Литература:

Марио Льоцци. История физики . М., Мир, 1970
Kerker M. Brownian Movements and Molecular Reality Prior to 1900 . Journal of Chemical Education, 1974, vol. 51, № 12
Леенсон И.А. Химические реакции . М., Астрель, 2002



БРОУНОВСКОЕ ДВИЖЕНИЕ (брауновское движение) - беспорядочное движение малых частиц, взвешенных в жидкости или газе, происходящее под действием ударов молекул окружающей среды. Исследовано в 1827 P. Броуном (Браун; R. Brown), к-рый наблюдал в микроскоп движение цветочной пыльцы, взвешенной в воде. Наблюдаемые частицы (броуновские) размером ~1 мкм и менее совершают неупорядоченные независимые движения, описывая сложные зигзагообразные траектории. Интенсивность Б. д. не зависит от времени, но возрастает с ростом темп-ры среды, уменьшением её вязкости и размеров частиц (независимо от их хим. природы). Полная теория Б. д. была дана А. Эйнштейном (A. Einstein) и M. Смолуховским (M. Smoluchowski) в 1905-06.

Причины Б. д.- тепловое движение молекул среды и отсутствие точной компенсации ударов, испытываемых частицей со стороны окружающих её молекул, т. е. Б. д. обусловлено флуктуациями давления. Удары молекул среды приводят частицу в беспорядочное движение: скорость её быстро меняется по величине и направлению. Если фиксировать положение частиц через небольшие равные промежутки времени, то построенная таким методом траектория оказывается чрезвычайно сложной и запутанной (рис.).

Б. д.- наиб. наглядное эксперим. подтверждение представлений молекулярно-кинетич. теории о хаотич. тепловом движении атомов и молекул. Если промежуток наблюдения т достаточно велик, чтобы силы, действующие на частицу со стороны молекул среды, много раз меняли своё направление, то ср. квадрат проекции её смещения на к--л. ось (в отсутствие др. внеш. сил) пропорционален времени т (закон Эйнштейна):

где D - коэф. диффузии броуновской частицы. Для сферич. частиц радиусом a: (T - абс. темп-ра,- динамич. вязкость среды). При выводе закона Эйнштейна предполагается, что смещения частицы в любом направлении равновероятны и что можно пренебречь инерцией броуновской частицы по сравнению с влиянием сил трения (это допустимо для достаточно больших). Ф-ла для коэф. D основана на применении Стокса закона для гидродинамич. сопротивления движению сферы радиусом а в вязкой жидкости. Соотношения для и D были экспериментально подтверждены измерениями Ж. Перрена (J. Perrin) и T. Сведберга (T. Svedberg). Из этих измерений экспериментально определены постоянная Больцмана k и Авогадро постоянная N А .

Кроме поступательного Б. д., существует также вращательное Б. д. - беспорядочное вращение броуновской частицы под влиянием ударов молекул среды. Для вращат. Б. д. ср. квадратичное угловое смещение частицы пропорционально времени наблюдения

где D вp - коэф. диффузии вращат. Б. д., равный для сферич. частицы: . Эти соотношения были также подтверждены опытами Перрена, хотя этот эффект гораздо труднее наблюдать, чем поступательное Б. д.

Теория Б. д. исходит из представления о движении частицы под влиянием "случайной" обобщённой силы f (<), к-рая описывает влияние ударов молекул и в среднем равна нулю, систематич. внеш. силы X , к-рая может зависеть от времени, и силы трения -, возникающей при движении частицы в среде со скоростью . Ур-ние случайного движения броуновской частицы - Ланжевена уравнение - имеет вид:

где т - масса частицы (или, если х - угол, её момент инерции), h - коэф. трения при движении частицы в среде. Для достаточно больших промежутков времени инерцией частицы (т. е. членом) можно пренебречь и, проинтегрировав ур-ние Ланжевена при условии, что ср. произведение импульсов случайной силы для неперекрывающихся промежутков времени равно нулю, найти ср. квадрат флуктуации , т. е. вывести соотношение Эйнштейна. В более общей задаче теории Б. д. последовательность значений координат и импульсов частиц через равные промежутки времени рассматривается как марковский случайный процесс , что является др. формулировкой предположения о независимости толчков, испытываемых частицами в разные неперекрывающиеся промежутки времени. В этом случае вероятность состояния х в момент t полностью определяется вероятностью состояния x 0 в момент t 0 и можно ввести ф-цию - плотность вероятности перехода из состояния x 0 в состояние, для к-рого х лежит в пределах х, x+dx в момент времени t . Плотность вероятности удовлетворяет интегральному ур-нию Смолуховского, к-рое выражает отсутствие "памяти" о нач. состоянии для случайного марковского процесса. Это ур-ние для многих задач теории Б. д. можно свести к дифференц. Фоккера - Планка уравнению в частных производных - обобщённому ур-нию диффузии в фазовом пространстве . Поэтому решение задач теории Б. д. можно свести к интегрированию Фоккера - Планка ур-ния при определ. граничных и нач. условиях. Матем. моделью Б. д. является винеровский случайный процесс .

Броуновское движение трёх частиц гуммигута в воде (по Перрену). Точками отмечены положения частиц через каждые 30 с. Радиус частиц 0,52 мкм, расстояния между делениями сетки 3,4 мкм.

Тепловое движение

Любое вещество состоит из мельчайших частиц - молекул. Молекула - это наименьшая частица данного вещества, сохраняющая все его химические свойства. Молекулы расположены в пространстве дискретно, т. е. на некоторых расстояниях друг от друга, и находятся в состоянии непрерывного беспорядочного (хаотичного) движения .

Поскольку тела состоят из большого числа молекул и движение молекул беспорядочно, то нельзя точно сказать, сколько ударов будет испытывать та или иная молекула со стороны других. Поэтому говорят, что положение молекулы, её скорость в каждый момент времени случайны. Однако это не означает, что движение молекул не подчиняется определённым законам. В частности, хотя скорости молекул в некоторый момент времени различны, у большинства из них значения скорости близки к некоторому определённому значению. Обычно, говоря о скорости движения молекул, имеют в виду среднюю скорость (v$cp ).

Нельзя выделить какое-то определённое направление, в котором движутся все молекулы. Движение молекул никогда не прекращается. Можно сказать, что оно непрерывно. Такое непрерывное хаотическое движение атомов и молекул называют — . Такое название определяется тем, что скорость движения молекул зависит от температуры тела. Чем больше средняя скорость движения молекул тела, тем выше его температура. И наоборот, чем выше температура тела, тем больше средняя скорость движения молекул.

Броуновское движение

Движение молекул жидкости было обнаружено при наблюдении броуновского движения - движения взвешенных в ней очень мелких частиц твердого вещества. Каждая частица беспрерывно совершает скачкообразные перемещения в произвольных направлениях, описывая траектории в виде ломаной линии. Такое поведение частиц можно объяснить, считая, что они испытывают удары молекул жидкости одновременно с разных сторон. Различие в числе этих ударов с противоположных направлений приводит к движению частицы, поскольку ее масса соизмерима с массами самих молекул. Движение таких частиц впервые обнаружил в 1827 г. английский ботаник Броун, наблюдая под микроскопом частицы цветочной пыльцы в воде, почему оно и было названо — броуновское движение .