Научить ребенка делению столбиком просто. Необходимо объяснить алгоритм этого действия и закрепить пройденный материал.

  • Согласно школьной программе, деление столбиком детям начинают объяснять уже в третьем классе. Ученики, которые схватывают все «на лету», быстро понимают эту тему
  • Но, если ребенок заболел и пропустил уроки математики, или он не понял тему, тогда родители должны самостоятельно малышу объяснить материал. Нужно максимально доступно донести до него информацию
  • Мамы и папы во время учебного процесса ребенка должны быть терпеливыми, проявляя такт по отношению к своему чаду. Ни в коем случае нельзя кричать на ребенка, если у него что-то не получается, ведь так можно отбить у него всю охоту к занятиям



Важно: Чтобы ребенок понял деление чисел, он должен досконально знать таблицу умножения. Если малыш плохо знает умножение, он не поймет деление.

Во время домашних дополнительных занятий можно пользоваться шпаргалками, но ребенок должен выучить таблицу умножения, прежде чем, приступать к теме «Деление».

Итак, как объяснить ребенку деление столбиком :

  • Постарайтесь сначала объяснить на маленьких цифрах. Возьмите счетные палочки, например, 8 штук
  • Спросите у ребенка, сколько пар в этом ряду палочек? Правильно — 4. Значит, если разделить 8 на 2, получится 4, а при делении 8 на 4 получится 2
  • Пусть ребенок сам разделит другое число, например, более сложное: 24:4
  • Когда малыш освоил деление простых чисел, тогда можно переходить к делению трехзначных чисел на однозначные



Деление всегда дается детям немного сложнее, чем умножение. Но усердные дополнительные занятия дома помогут малышу понять алгоритм этого действия и не отставать от сверстников в школе.

Начинайте с простого — деление на однозначное число:

Важно: Просчитайте в уме, чтобы деление получилось без остатка, иначе ребенок может запутаться.

Например, 256 разделить на 4:

  • Начертите на листе бумаги вертикальную линию и разделите ее с правой части пополам. Слева напишите первую цифру, а справа над чертой вторую
  • Спросите у малыша, сколько четверок помещается в двойке — нисколько
  • Тогда берем 25. Для наглядности отделите это число сверху уголком. Опять спросите у ребенка, сколько помещается четверок в двадцати пяти? Правильно — шесть. Пишем цифру «6» в правом нижнем углу под линией. Ребенок должен использовать таблицу умножения для правильного ответа
  • Запишите под 25 цифру 24, и подчеркните, чтобы записать ответ — 1
  • Опять спрашивайте: в единице сколько помещается четверок — нисколько. Тогда сносим к единице цифру «6»
  • Получилось 16 — сколько четверок помещается в этом числе? Правильно — 4. Записываем «4» рядом с «6» в ответе
  • Под 16 записываем 16, подчеркиваем и получается «0», значит мы разделили правильно и ответ получился «64»

Письменное деление на двузначное число



Когда ребенок освоил деление на однозначное число, можно двигаться дальше. Письменное деление на двузначное число чуть сложнее, но если малыш поймет, как производится это действие, тогда ему не составит труда решать такие примеры.

Важно: Снова начинайте объяснять с простых действий. Ребенок научится правильно подбирать цифры и ему будет легко делить сложные числа.

Выполните вместе такое простое действие: 184:23 — как нужно объяснять:

  • Разделим сначала 184 на 20, получается примерно 8. Но мы не пишем цифру 8 в ответ, так как это пробная цифра
  • Проверяем, подходит 8 или нет. Умножаем 8 на 23, получается 184 — это именно то число, которое у нас стоит в делителе. Ответ будет 8

Важно: Чтобы ребенок понял, попробуйте вместо восьмерки взять 9, пусть он умножит 9 на 23, получается 207 — это больше, чем у нас в делителе. Цифра 9 нам не подходит.

Так постепенно малыш поймет деление, и ему будет легко делить более сложные числа:

  • Разделим 768 на 24. Определите первую цифру частного — делим 76 не на 24, а на 20, получается 3. Записываем 3 в ответ под чертой справа
  • Под 76 записываем 72 и проводим линию, записываем разность — получилось 4. Эта цифра делится на 24? Нет — сносим 8, получается 48
  • Цифра 48 делится на 24? Правильно — да. Получается 2, записываем эту цифру в ответ
  • Получилось 32. Теперь можно проверить — правильно ли мы выполнили действие деления. Сделайте умножение в столбик: 24х32, получается 768, значит все правильно



Если ребенок научился выполнять деление на двузначное число, тогда необходимо перейти к следующей теме. Алгоритм деления на трехзначное число такой же, как и алгоритм деления на двузначное число.

Например:

  • Разделим 146064 на 716. Берем сначала 146 — спросите у ребенка делится это число на 716 или нет. Правильно — нет, тогда берем 1460
  • Сколько раз число 716 поместится в числе 1460? Правильно — 2, значит пишем эту цифру в ответе
  • Умножаем 2 на 716, получается 1432. Записываем эту цифру под 1460. Получается разность 28, записываем под чертой
  • Сносим 6. Спросите у ребенка — 286 делится на 716? Правильно — нет, поэтому пишем 0 в ответе рядом с 2. Сносим еще цифру 4
  • Делим 2864 на 716. Берем по 3 — мало, по 5 — много, значит получается 4. Умножаем 4 на 716, получается 2864
  • Запишите 2864 под 2864, получается в разности 0. Ответ 204

Важно: Для проверки правильности выполнения деления, умножьте вместе с ребенком в столбик — 204х716=146064. Деление выполнено правильно.



Пришло время ребенку объяснить, что деление может быть не только нацело, но и с остатком. Остаток всегда меньше делителя или равен ему.

Деление с остатком следует объяснять на простом примере: 35:8=4 (остаток 3):

  • Сколько восьмерок помещается в 35? Правильно — 4. Остается 3
  • Делится эта цифра на 8? Правильно — нет. Получается, остаток 3

После этого ребенок должен узнать, что можно продолжать деление, дописывая 0 к цифре 3:

  • В ответе стоит цифра 4. После нее пишем запятую, так как добавление нуля говорит о том, что число будет с дробью
  • Получилось 30. Делим 30 на 8, получается 3. Записываем в ответ, а под 30 пишем 24, подчеркиваем и пишем 6
  • Сносим к цифре 6 цифру 0. Делим 60 на 8. Берем по 7, получается 56. Пишем под 60 и записываем разность 4
  • К цифре 4 дописываем 0 и делим на 8, получается 5 — записываем в ответ
  • Вычитаем 40 из 40, получается 0. Итак, ответ: 35:8=4,375



Совет: Если ребенок что-то не понял — не злитесь. Пусть пройдет пару дней и снова постарайтесь объяснить материал.

Уроки математики в школе также будут закреплять знания. Пройдет время и малыш будет быстро и легко решать любые примеры на деление.

Алгоритм деления чисел заключается в следующем:

  • Сделать прикидку числа, которое будет стоять в ответе
  • Найти первое неполное делимое
  • Определить число цифр в частном
  • Найти цифры в каждом разряде частного
  • Найти остаток (если он есть)

По такому алгоритму выполняется деление как на однозначные числа, так и на любое многозначное число (двузначное, трехзначное, четырехзначное и так далее).



Занимаясь с ребенком, чаще ему задавайте примеры на выполнение прикидки. Он должен быстро в уме подсчитать ответ. Например:

  • 1428:42
  • 2924:68
  • 30296:56
  • 136576:64
  • 16514:718

Для закрепления результата можно использовать такие игры на деление:

  • «Головоломка». Напишите на листе бумаги пять примеров. Только один из них должен быть с правильным ответом.

Условие для ребенка: Среди нескольких примеров, только один решен правильно. Найди его за минуту.

Видео: Игра арифметика для детей сложение вычитание деление умножение

Видео: Развивающий мультфильм Математика Изучение наизусть таблицы умножения и деления на 2

Видео: Знакомство с делением | Забавная МАТЕМАТИКА для малышей

Видео: Деление двузначного числа на однозначное

Когда ребенок дополнительно занимается дома, он закрепляет пройденный материал в школе. Благодаря этому ему легче учиться и он не будет отставать от сверстников. Поэтому помогайте своим детям, занимайтесь дома с ними вместе. и у малыша все получится!

Алгоритм деления «уголком» многочленов от одной переменной

Напомним, что разделить натуральное число a на натуральное число b – это значит представить число a в виде:

a = bc + r ,

где частное c и остаток r – целые неотрицательные числа, причем остаток r удовлетворяет неравенству:

Если друг на друга делить многочлены, то возникает похожая ситуация.

Действительно, при выполнении над многочленами операций сложения, вычитания и умножения результатом всегда будет многочлен. В частности, при перемножении двух многочленов , отличных от нуля, степень произведения будет равна сумме степеней сомножителей.

Однако в результате деления многочленов многочлен получается далеко не всегда.

Говорят, что один многочлен нацело (без остатка) делится на другой многочлен , если результатом деления является многочлен.

Если же один многочлен не делится нацело на другой многочлен, то всегда можно выполнить деление многочленов с остатком , в результате которого и частное, и остаток будут многочленами.

Определение . Разделить многочлен a (x ) на многочлен b (x ) с остатком – это значит представить многочлен a (x ) в виде

a (x ) = b (x ) c (x ) + r (x ) ,

где многочлен c (x ) – частное , а многочлен r (x ) – остаток , причем, степень остатка удовлетворяет неравенству:

Очень важно отметить, что формула

a (x ) = b (x ) c (x ) + r (x )

является тождеством , т.е. равенством, справедливым при всех значениях переменной x .

При делении (с остатком или без остатка) многочлена на многочлен меньшей степени в частном получается многочлен, степень которого равна разности степеней делимого и делителя.

Один из способов деления многочленов с остатком – это деление многочленов «уголком» , что представляет собой полную аналогию с тем, как это происходит при делении целых чисел.

К описанию этого способа деления многочленов мы сейчас и переходим.

Пример . Заранее расположив многочлены по убывающим степеням переменной, разделим многочлен

2x 4 - x 3 + 5x 2 - 8x + 1

на многочлен

x 2 - x + 1 .

Решение . Опишем алгоритм деления многочленов «уголком» по шагам:

Запись изложенного процесса деления многочленов «уголком» имеет следующий вид:индивидуальные занятия с репетиторами по математике, физике и русскому языку

Деление чисел рассматривают как действие деления с остатком: разделить целое неотрицательное число a на натуральное число b - это значит найти такие целые неотрицательные числа q и r , что a = b·q+ r , причем 0 r < b .


Если на однозначное число делят однозначное или двузначное (не превышающее 89), то используется таблица однозначных чисел. Например, частным чисел 56 и 8 будет число 7, так как 8·7 = 56. Если же надо разделить 52 на 8, то находят ближайшее к нему меньшее число, которое делится на 8 - это будет число 48, и, следовательно, неполным частным при делении 52 на 8 будет число 6. Чтобы найти остаток, надо из 52 вычесть 48: 52 - 48 = 4. Таким образом, 52 = 8·6 + 4, т.е. при делении 52 на 8 получается неполное частное 6 и остаток, равный 4.


Задача 8. Проиллюстрировать теоретические основы деления трехзначного числа 377 на однозначное число 4.


Решение . Разделить 377 на 4 - это значит найти такое неполное частное q и остаток r , что 377 = 4q + r , причем остаток r должен удовлетворять условию 0 r < b , а неполное частное q - условию 4 q ≤ 377 < 4·(q + 1).


Определим, сколько цифр будет содержаться в записи числа q . Однозначным число q быть не может, так как тогда произведение 4q может быть максимально равно 36 и, значит, не будут выполняться условия, сформулированные выше для r и q . Если число q двузначное, т.е. если 10 < q < 100, то тогда 40 < 4q < 400 и, следовательно, 40 < 377 < 400, что верно. Значит, частное чисел 377 и 4 - число двузначное.


Чтобы найти цифру десятков частного, умножим последовательно делитель 4 на 20, 30, 40 и т.д. Поскольку 4·90 = 360, а 4·100 = 400, и 360 < 377 < 400, то неполное частное заключено между числами 90 и 100, т.е. q = 90 + q0 . Но тогда должны выполняться неравенства:


4·(90 + q0 ) ≤ 377 < 360 + 4·(90 + q0 + 1), откуда


360 + 4q0 ≤ 377 < 360 + 4·(q0 + 1) и 4q 0 ≤ 17 < 4·(q0 + 1).


Число q0 (цифра единиц частного), удовлетворяющее последнему неравенству, можно найти подбором, воспользовавшись таблицей . Получаем, что q0 = 4 и, следовательно, неполное частное q = 90 + 4 = 94. Остаток находится вычитанием: 377 - 4·94 = 1.


Итак, при делении числа 377 на 4 получается неполное частное 94 и остаток 1: 377=4·94+1.


Задача 9. Проиллюстрировать теоретические основы деления многозначного числа 4316 на многозначное число 52.


Решение . Разделить 4316 на 52 - это значит найти такие целые неотрицательные числа q и r , что 4316 = 52 q + r , 0 ≤ r < 52, а неполное частное должно удовлетворять неравенству 52q ≤ 4316 < 52(q + 1).


Определим число цифр в частном q. Очевидно, частное заключено между числами 10 и 100 (т.е. q - двузначное число), так как 520 < 4316 < 5200. Чтобы найти цифру десятков частного, умножим последовательно делитель 52 на 20, 30, 40, 50 и т.д. Поскольку 52·80 = 4160, а 52·90 = 4680 и 4160 < 4316 < 4680, то неполное частное заключено между числами 80 и 90, т.е. q = 80 + q0. Но тогда должны выполняться неравенства:


52·(80 + q0 ) ≤ 4316 < 52·(80 + q0 + 1),


4160 + 52 q0 ≤ 4316 < 4160 + 52·(q0 + 1),


52 q0 ≤ 153 < 52·(q0 + 1).


Число q0 (цифру единиц частного), удовлетворяющее последнему неравенству, можно найти подбором: 156 = 52·3, т.е. имеем случай, когда остаток равен 0. Следовательно, при делении 4316 на 52 получается частное 83.


Приведенные рассуждения лежат в основе деления уголком:


Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком.


1. Если а = b , то частное q = 1, остаток r = 0.


2. Если а > b и число разрядов в числах a и b одинаково, то частное q находим перебором, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7, 8, 9, так как а < 10b . Этот перебор можно ускорить, выполнив деление с остатком цифр старших разрядов чисел а и b.


3. Если а > b и число разрядов в числе а больше, чем в числе b, то записываем делимое а и справа от него делитель b, который отделяем от а уголком и ведем поиск частного и остатка в такой последовательности:


а) выделяем в числе а столько старших разрядов, сколько разрядов в числе b или, если необходимо, на один разряд больше, но так, чтобы они образовывали число d1 больше или равное b. Перебором находим частное q1 чисел d1 и b, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7, 8, 9. Записываем q1 под уголком (ниже b) ;


б) умножаем b на q1 и записываем произведение под числом а так, чтобы младший разряд числа bq1 был написан под младшим разрядом выделенного числа d1 ;


в) проводим черту под bq1 и находим разность r1 = d1 - bq1 ;


г) записываем разность r1 под числом bq1, приписываем справа к r1 старший разряд из неиспользованных разрядов делимого а и сравниваем полученное число d2 с числом b.


д) если полученное число d2 больше или равно b, то относительно него поступаем согласно п. 1 или п. 2. Частное q2 записываем после q1 ;


е) если полученное число d2 меньше b , то приписываем еще столько следующих разрядов, сколько необходимо, чтобы получить первое число d3, большее или равное b. В этом случае записываем после q1 такое же число нулей. Затем относительно d3 поступаем согласно пункты 1, 2. Частное q2 записываем после нулей. Если при использовании младшего разряда числа а окажется, что d3 < b, то тогда частное чисел d3 и b равно нулю, и этот нуль записывается последним разрядом к частному, а остаток r = d3.


Упражнения для самостоятельной работы


1. Не выполняя деления, определите число цифр частного чисел:


а) 475 и 7; б) 6134 и 226; в) 5683 и 25; г) 43127 и 536.


2. Проиллюстрируйте теоретические основы деления трехзначного числа 868 на однозначное число 3.


3. Найдите двумя способами значение выражения:


а) (297 + 405 + 567):27; в) 56·(378:14);


б) (240·23):48; г) 15120:(14·5·8).


4. Найдите значение выражения:


а) 8919:9 + 114240:21; б) 1190 - 35360: 34 + 271; в) 8631 - (99 + 44352:63);


г) 48600·(5045 - 2040) : 243 - (8604 3:43 + 504)·200.

Когда речь идет о технике деления чисел, то этот процесс рассматривают как действие деления с остатком: разделить целое неотрицательное число а на натуральное число b - это значит найти такие це­лые неотрицательные числа q r, что а = bq + r, причем 0 £ r < b.

Выясним сначала, как осуществляется деление на однозначное число . Если на однозначное число делят однозначное или двузначное (не превышающее 89), то используется таблица умножения однозначных чисел. Например , частным чисел 54 и 9 будет число 6, так как 9 × 6 = 54. Если же надо разделить 51 на 9, то находят ближайшее к нему меньшее число, которое делится на 9 - это число 45, и, следовательно, непол­ным частным при делении 51 на 9 будет число 5. Чтобы найти остаток, надо из 51 вычесть 45: 51 - 45 = 6. Таким образом, 51 = 9×5 + 6, т.е. при делении 51 на 9 получается неполное частное 5 и остаток, равный 6. Записать это можно иначе, при помощи деления уголком:

Будем теперь делить трехзначное число на однозначное, например, 378 на 4. Разделить 378 на 4 - это значит найти такое неполное частное q и остаток r , что 378 = 4 q + r , причем остаток r должен удовлетвори условию 0 £ r < b , а неполное частное q - условию 4 q £ 378 < 4(q + 1).

Определим, сколько цифр будет содержаться в записи числа q. Однозначным число q быть не может, так как тогда произведение 4 q может быть максимально равно 36 и, значит, не будут выполняться условий сформулированные выше для r и q . Если число q двузначное, т.е. есть 10 < q < 100, то тогда 40 < 4 q < 400 и, следовательно, 40 < 378 < 400, что верно. Значит, частное чисел 378 и 4 - число двузначное.

Чтобы найти цифру десятков частного, умножим последовательно делитель 4 на 20, 30, 40 и т.д. Поскольку 4 × 90 = 360, а 4 × 100 = 400, и 360 < 378 < 400, то неполное частное заключено между числами90 и100, т.е. q = 90 + q 0. Но тогда должны выполняться неравенства: 4× (90 + q 0) £ 378 < 4 × (90 q + q 0 + 1), откуда 360 + 4 q 0 £ 378 < 360 + 4(q 0 + 1) и 4 q 0 £ 18 < 4(q 0 + 1). Число q 0 (цифра единиц частного), удовлетво­ряющее последнему неравенству, можно найти подбором, воспользовавшись таблицей умножения. Получаем, что q 0 = 4 и, следовательно, неполное частное q = 90 + 4 = 94. Остаток находится вычитание: 378 – 4 × 94 = 2.

Итак, при делении числа 378 на 4 получается неполное частное 94 и остаток 2: 378 – 4 × 94 + 2.

Описанный процесс является основой деления уголком:

Аналогично выполняется деление многозначного числа на многозначное . Разделим, например, 4316 на 52. Выполнить это деление - зна­чит найти такие целые неотрицательные числа q и r, что 4316 = 52 q + r , 0£ r < 52, а неполное частное должно удовлетворять неравенству 52 q £ 4316 < 52 (q+1).

Определим число цифр в частном q. Очевидно, частное заключено между числами 10 и 100 (т.е. q - двузначное число), так как 520 < 4316 < < 5200. Чтобы найти цифру десятков частного, умножим последова­тельно делитель 52 на 20, 30, 40, 50 и т.д. Поскольку 52 × 80 = 4160, а 52 × 90 = 4680 и 4160 < 4316 < 4680, то неполное частное заключено между числами 80 и 90, т.е. q = 80 + q 0 . Но тогда должны выполняться неравенства:

52× (80+ q 0) £ 4316 < 52 × (80+ q 0 + 1),

4160 + 52 q 0 £ 4316 < 4160 + 52× (q 0 + 1),

52 q 0 £ 156 < 52 × (q 0 + 1).

Число q 0 (цифру единиц частного), удовлетворяющее последнему неравенству, можно найти подбором: 156 = 52× 3, т.е. имеем случай, когда остаток равен 0. Следовательно, при делении 4316 на 52 получа­ется частное 83.

Приведенные рассуждения лежат в основе деления уголком:

Конец работы -

Эта тема принадлежит разделу:

Непротиворечивая система аксиом называется независимой, если никакая из аксиом этой системы не является следствием других аксиом этой системы

При аксиоматическом построении теории по существу все утверж дения выводятся путем доказательства из аксиом Поэтому к системе аксиом предъявляются... Система аксиом называется непротиворечивой если из нее нельзя логически... Если система аксиом не обладает этим свойством она не может быть пригодной для обоснования научной теории...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Количественные натуральные числа. Счет
Аксиоматическая теория описывает натуральное число как эле­мент бесконечного ряда, в котором числа располагаются в определенном порядке, существует первое число и т.д. Другими словами, в аксиоматик

Вопросы для самоконтроля
1. Назовите виды множеств, дайте им характеристику. Какие можно производить операции над множествами? 2. Что такое «число», «цифра», «счет»? 3. В чем связь и различие счета и изме

Теоретико-множественный смысл частного натуральных чисел.
Основная литература; Дополнительная литература Введение. Введя понятие отрезка натурального ряда, мы выяснил

Теоретико-множественный смысл суммы
Сложение целых неотрицательных чисел связано с объединением конечных непересекающихся множеств. Например, если множество А содержит 5 элементов, а множество В - 4 элемента и пересечен

Теоретико-множественный смысл разности
В аксиоматической теории вычитание натуральных чисел определено как операция, обратная сложению: а – b = с Û ($ сÎN) b + с = а. Вычитание целых неотрицательных чисел определяет

Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определ

Теоретико-множественный смысл частного натуральных чисел
В аксиоматической теории деление определяется как операция, обратная умножению, поэтому между делением и умножением устанавливается тесная взаимосвязь. Если а× b = с, то, зная произведение с

ТЕМА 14. ПОЗИЦИОННЫЕ И НЕПОЗИЦИОННЫЕ СИСТЕМЫ ИСЧИСЛЕНИЯ
Содержание 1. Позиционные и непозиционные системы счисления. 2. Запись числа в десятичной системе счисления. Основная литература ;

Язык для наименования, записи чисел и выполнения действий над ними называют системой счисления.
Называть числа и вести счет люди научились еще до появления письменности. В этом им помогали, прежде всего, пальцы рук и ног. Издревле употреблялся еще такой вид инструментального счета, как деревя

Запись числа в десятичной системе счисления
Как известно, в десятичной системе счисления для записи чисел пользуется 10 знаков (цифр): 0, 1,2, 3, 4, 5, 6, 7, 8, 9. Из них образую конечные последовательности, которые являются краткими записям

Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел,

Алгоритм вычитания
Вычитание однозначного числа b из однозначного или двузначного числа а, не превышающего 18, сводится к поиску такого числа с, что b + с = а, и происходит с учетом таблицы сложения однозначных чисел

Описанный процесс позволяет сформулировать в общем виде алгоритм вычитания чисел в десятичной системе счисления.
1. Записываем вычитаемое под уменьшаемым так, чтобы соответствующие разряды находились друг под другом. 2. Если цифра в разряде единиц вычитаемого не превосходит соответствующей цифры умен

Алгоритм умножения
Умножение однозначных чисел можно выполнить, основываясь на определении этого действия. Но чтобы всякий раз не обращаться к определению, все произведения однозначных чисел записывают в особую табли

Обобщением различных случаев деления целого неотрицательного числа а на натуральное число b является следующий алгоритм деления уголком.
1. Если а =b, то частное q = 1, остаток r = 0. 2. Если а >b и число разрядов в числах а и b одинаково, то частное q находим перебором, последовательно умножая b на 1, 2, 3, 4, 5, 6, 7,

Наименьшее общее кратное и наибольший общий делитель.
4. Простые числа. 5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел. Основная литература ; Дополнительн

Отношение делимости и его свойства
Определение.Пусть даны натуральные числа а и b. Говорят, что число а делится на число b, если существует такое натуральное число q, что а = bq. В этом случае чис

Признаки делимости
Рассмотренные в свойства отношения делимости позволяют доказать известные признаки делимости чисел, записанных в десятич­ной системе счисления, на 2, 3, 4, 5, 9. Признаки делимости позволя

Наименьшее общее кратное и наибольший общий делитель
Рассмотрим известные из школьного курса математики понятия наименьшего общего кратного и наибольшего общего делителя натуральных чисел, сформулируем их основные свойства, опустив все доказательства

Простые числа
Простые числа играют большую роль в математике - по существу они являются «кирпичами», из которых строятся составные числа. Это утверждается в теореме, называемой основной теоремой арифмет

Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
Рассмотрим сначала способ, основанный на разложении данных чисел на простые множители. Пусть даны два числа 3600 и 288. Представим их в каноническом виде: 3600 = 24×3

ТЕМА 17. О РАСШИРЕНИИ МНОЖЕСТВА НАТУРАЛЬНЫХ ЧИСЕЛ
Содержание 1. Понятие дроби. 2. Положительные рациональные числа. 3. Запись положительных рациональных чисел в виде десятичных дробей. 4. Действительные ч

Понятие дроби
Пусть требуется измерить длину отрезка х с помощью единичного отрезка е (рис. 1). При измерении оказалос

Положительные рациональные числа
Отношение равенства является отношением эквивалентностинамножестве дробей, поэтому оно порождает на нем классы эквивалентности. В каждом таком классе содержатся равные междусобой дроби. На

Сложение положительных рациональных чисел коммутативно и ассоциативно,
("а, b Î Q+) а + b= b + а; ("а, b, с Î Q+) (а + b)+ с = а + (b+ с) Прежде чем сформулировать определе

Запись положительных рациональных чисел в виде десятичных дробей
Впрактической деятельности широко используются дроби, знаменатели которых являются степенями 10. Их называют десятичными. Определение. Десят

Действительные числа
Одним из источников появления десятичных дробей является деление натуральных чисел, другим - измерение величин. Выясним, например, как могут получиться десятичные дроби при измерении длины отрезка.

Теоретико-множественный смысл разности.
8. Отношения «больше на» и «меньше на». 9. Правила вычитания числа из суммы и суммы из числа. 10. Из истории возникновения и развития способов записи натуральных чисел и нуля.

Множество положительных рациональных чисел как расширение множества натуральных чисел.
27. Запись положительных рациональных чисел в виде десятичных дробей. 28. Действительные числа. МОДУЛЬ 4. ГЕОМЕТРИЧЕСКИЕ ФИГУРЫ И ВЕЛИЧ

Понятие положительной скалярной величины и ее измерения
Рассмотрим два высказывания, в которых используется слово «длина»: 1) Многие окружающие нас предметы имеют длину. 2) Стол имеет длину. В первом предложении утверждается,