Выделительные функции осуществляются желудочно- кишечным трактом; органами внешнего дыхания; потовыми, сальными, слезными, молочными и другими железами, а также почками (рис. 1.14), с помощью которых из организма удаляются продукты распада.

Рис. 1.14.

Важным органом выделительной системы являются почки, которые непосредственно участвуют в регуляции водного и минерального обменов, обеспечивают кислотно-щелочное равновесие (баланс) в организме, образуют биологически активные вещества, например ренин, влияющий на уровень артериального давления.

Химическое строение организма человека

В состав организма человека входят органические и неорганические вещества. Вода составляет 60% массы тела, а минеральные вещества - в среднем 4%. Органические вещества представлены в основном белками (18%), жирами (15%), углеводами (2-3%). Все вещества организма, как и неживой природы, построены из атомов различных химических элементов.

В состав организма человека из 110 известных химических элементов входит в основном 24 (табл. 1.2). В зависимости от их количества в организме химические элементы делятся на основные, макро-, микро- и ультрамикроэлементы.

Отметим, что отдельные химические элементы неравномерно накапливаются в различных органах и тканях организма человека. Так, например, костная ткань накапливает кальций и фосфор, кровь - железо, щитовидная железа - йод, печень - медь, кожа - стронций и т.д.

Количественный и качественный состав химических элементов организма зависит как от внешних факторов среды (питание, экология и др.), так и функций отдельных органов.

Макроэлементы и их значимость в организме определяются тем, что они необходимы для осуществления многих био-

Таблица 1.2

Химические элементы, входящие в состав организма человека

(по Н. И. Волкову)

Химический элемент

Основные

Кислород (О)

Всего 99,9%

элементы

Углерод (С)

Водород (Н) Азот (N)

Макроэлементы

Кальций (Са)

Фосфор (Р)

Натрий (Na)

Магний (Mg)

Микро- и ультра-

микроэлементы

Фтор (F) Кремний (Si) Ванадий (V) Хром (Сг) Марганец (Мп) Железо (Fe) Кобальт (Со) Медь (Си) Цинк (Zn) Селен (Se)

Молибден (Мо) Йод (J)

химических процессов. Они являются незаменимыми факторами питания, так как в организме не образуются. Содержание минеральных веществ относительно невелико (4-10% сухой массы тела) и зависит от функционального состояния организма, его возраста, характера питания и условий внешней среды.

Кальций в организме человека составляет 40% общего количества всех минеральных веществ. Он входит в состав зубов и костей, придавая им прочность. Снижение поступления кальция в ткани организма приводит к выходу его из костей, что вызывает снижение их прочности (остеопороз), а также нарушение функций нервной системы, кровообращения, в том числе мышечной деятельности.

Фосфор составляет 22% от количества всех минеральных веществ. Около 80% его количества находится в тканях в виде фосфата кальция. Фосфор играет важную роль в процессах энергообразования, так как в виде остатков фосфорной кислоты входит в состав источников энергии - АТФ, АДФ, КрФ, различных нуклеотидов, а также в состав переносчиков водорода и некоторых продуктов обмена.

Натрий и калий содержатся во всех тканях и жидкостях организма. Калий преимущественно внутри клеток, натрий - во внеклеточном пространстве. Оба участвуют в проведении нервного импульса, возбуждении тканей, создании осмотического давления крови (осмотические активные ионы), поддержании кислотно-основного равновесия, а также влияют на активность ферментов Na f , K f , АТФазы. Эти элементы регулируют обмен воды в организме: ионы натрия удерживают воду в тканях и вызывают набухание белков (образование коллоидов), что приводит к появлению отеков; ионы калия, наоборот, усиливают выведение натрия и воды из организма. Недостаточность натрия и калия в организме вызывает нарушение деятельности ЦНС, сократительного аппарата мышц, сердечно-сосудистой и пищеварительной систем, что приводит к снижению физической работоспособности.

Магний в тканях организма находится в определенном соотношении с кальцием. Он влияет на энергетический обмен, синтез белка, поскольку является активатором многих ферментов, которые называются киназами и выполняют функцию переноса фосфатной группы от молекулы АТФ на различные субстраты. Магний влияет также на возбудимость мышц, способствует выведению холестерина из организма.

Недостаточность его приводит к повышению нервно-мышечной возбудимости, появлению судорог и мышечной слабости.

Хлор относится к осмотическим активным веществам и участвует в регуляции осмотического давления и водного обмена клеток организма, используется для образования соляной кислоты (НС1) - обязательного компонента желудочного сока. Недостаточность хлора в организме может привести к снижению артериального давления, способствует заболеванию инфарктом миокарда, вызывает утомляемость, раздражительность, сонливость.

Микро- и улътрамикроэлемепты. Железо играет очень важную роль в процессах аэробного энергообразования в организме. Оно входит в состав белков гемоглобина, миоглоби- на, которые осуществляют транспорт 0 2 и С0 2 в организме, а также в состав цитохромов - компонентов дыхательной цепи, в которой протекают процессы биологического окисления и образования ЛТФ. Недостаточность железа в организме приводит к нарушению образования гемоглобина и снижению его концентрации в крови. Это может привести к развитию железодефицитной анемии, снижению кислородной емкости крови и резкому снижению физической работоспособности.

Цинк входит в состав многих ферментов энергетического обмена, а также ферментов карбоангидразы, которые катализирует обмен Н 2 С0 3 и лакгатдегидрогеназы, регулирующих окислительный распад молочной кислоты. Он участвует в создании активной структуры белка инсулина - гормона поджелудочной железы, усиливает действие гормонов гипофиза (гонадотропного) и половых желез (тестостерона, эстрогена) на процессы синтеза белка. Недостаточность цинка может привести к ослаблению иммунитета, потере аппетита, замедлению процессов роста.

Медь способствует росту организма, усиливает процессы кроветворения, влияет на скорость окисления глюкозы и распад гликогена. Она входит в состав ферментов дыхательной цепи, повышает активность липазы, пепсина и других ферментов.

Марганец , кобальт , хром используются организмом как активаторы многих ферментов, принимающих участие в обмене углеводов, белков, липидов, синтезе холестерина, влияют на процессы кроветворения, повышают защитные силы организма. Хром также усиливает синтез белков, проявляя анаболическое действие. Марганец участвует в синтезе витамина С, что весьма существенно для спортсменов.

Йод необходим для построения гормонов щитовидной железы - тироксина и его производных. Недостаточность его в организме приводит к заболеваниям щитовидной железы (эндемический зоб): 150 мкг удовлетворяют суточную потребность организма в йоде.

Фтор входит в состав зубной эмали и дентина. Избыток его подавляет процессы тканевого дыхания и окисления жирных кислот. Недостаточность фтора вызывает заболевание зубов (кариес), а избыток - пятнистость эмали (флюороз).

Селен оказывает антиоксидантное действие, т.е. защищает клетки от чрезмерного перекисного окисления липидов, которое приводит к накоплению в тканях вредных перекисей водорода. Последнее исследование свидетельствует о том, что селен укрепляет иммунную систему и препятствует возникновению раковых клеток, участвует в передаче генетической информации.

В конце девятого века нашей эры арабский ученый Абу Бакр ар-Рази разделил все известные на тот момент вещества на 3 группы в зависимости от их происхождения: минеральные, животные и растительные. Классификация просуществовала почти 1000 лет. Только в 19 веке 3 группы превратились в 2: органические и неорганические вещества.

Неорганические вещества

Неорганические вещества бывают простыми и сложными. Простыми называют те вещества, в составе которых есть атомы всего одного химического элемента. Их делят на металлы и неметаллы.

Металлы – вещества пластичные, хорошо проводящие тепло и электрический ток. Почти все они серебристо-белые и обладают характерным металлическим блеском. Такие свойства – следствие особого строения. В металлической кристаллической решетке частицы металлов (их называют ион-атомами) соединены подвижными общими электронами.

Примеры металлов может назвать даже тот, кто далек от химии. Это железо, медь, цинк, хром и другие простые вещества, образованные атомами химических элементов, символы которых расположены в ПСХЭ Д.И. Менделеева под диагональю B – At и выше нее в главных подгруппах.

Неметаллы, как следует из их названия, не обладают свойствами металлов. Они хрупкие, электрический ток, за редкими исключениями, не проводят, не блестят (кроме йода и графита). Свойства их более многообразны по сравнению с металлами.

Причина таких различий также кроется в строении веществ. В кристаллических решетках атомного и молекулярного типов нет свободно передвигающихся электронов. Здесь они, объединяясь попарно, образуют ковалентные связи. Всем известные неметаллы – кислород, азот, сера, фосфор и другие. Элементы – неметаллы в ПСХЭ располагаются выше диагонали B-At

Сложные неорганические вещества – это:

  • кислоты, состоящие из атомов водорода и кислотных остатков (HNO3, H2SO4);
  • основания, образованные атомами металлов и гидроксо-группами (NaOH, Ba(OH)2);
  • соли, формулы которых начинаются с символов металлов, а заканчиваются кислотными остатками (BaSO4, NaNO3);
  • оксиды, образованные двумя элементами, причем один из них – О в степени окисления -2 (BaO, Na2O);
  • другие бинарные соединения (гидриды, нитриды, пероксиды и т.д.)

Всего неорганических веществ известно несколько сотен тысяч.

Органические вещества

Органические соединения отличаются от неорганических, прежде всего, своим составом. Если неорганические вещества могут быть образованы любыми элементами Периодической системы, то в состав органических должны непременно входить атомы C и H. Такие соединения называют углеводородами (CH4 – метан, C6H6 – бензол). Углеводородное сырье (нефть и газ) приносит человечеству огромную пользу. Однако и распри вызывает нешуточные.

Производные углеводородов содержат в своем составе еще и атомы O и N. Представители кислородсодержащих органических соединений – спирты и изомерные им простые эфиры (C2H5OH и CH3-O-CH3), альдегиды и их изомеры – кетоны (CH3CH2CHO и CH3COCH3), карбоновые кислоты и сложные эфиры (CH3-COOH и HCOOCH3). К последним принадлежат также жиры и воски. Углеводы – тоже кислородсодержащие соединения.

Почему же ученые объединили вещества растительные и животные в одну группу – органические соединения и в чем их отличие от неорганических? Одного четкого критерия, позволяющего разделить органические и неорганические вещества, нет. Рассмотрим ряд признаков, объединяющих органические соединения.

  1. Состав (построены из атомов C, H, O, N, реже P и S).
  2. Строение (связи С- Н и С – С обязательны, они образуют разной длины цепи и циклы);
  3. Свойства (все органические соединения горючи, образуют при горении СО2 и H2O).

Среди органических веществ много полимеров природного (белки, полисахариды, натуральный каучук и др.), искусственного (вискоза) и синтетического (пластмассы, синтетические каучуки, полиэстер и другие) происхождения. Они обладают большой молекулярной массой и более сложным, по сравнению с неорганическими веществами, строением.

Наконец, органических веществ насчитывают более 25 миллионов.

Это лишь поверхностный взгляд на органические и неорганические вещества. О каждой из этих групп написан не один десяток научных трудов, статей и учебников.

Неорганические соединения – видео

Каждая наука насыщена понятиями, при не усвоении которых основанные на этих понятиях или косвенные темы могут даваться очень трудно. Одними из понятий, которые должны быть хорошо усвоены каждым человеком, который считает себя более-менее образованным, есть разделение материалов на органические и неорганические. Не важно, сколько человеку лет, эти понятия в списке тех, с помощью которых определяют общий уровень развития на любом этапе человеческой жизни. Для того чтобы понять, в чем отличия этих двух терминов, сначала нужно выяснить, что собой являет каждый из них.

Органические соединения – что это

Органические вещества – группа химических соединений с неоднородной структурой, в состав которых входят элементы углерода , ковалентно связанных между собой. Исключение составляют карбиды, угольные, карбоновые кислоты. Также одними из составляющих веществ, кроме углерода, есть элементы водорода, кислорода, азота, серы, фосфора, галогена.

Такие соединения формируются благодаря способности атомов углерода перебывать в одинарных, двойных и тройных связях.

Сферой обитания органических соединений являются живые существа. Они могут быть как в составе живых существ, так и появится в результате их жизненной деятельности (молоко, сахар).

Продуктами синтеза органических веществ являются продукты питания, лекарства, элементы одежды, материалы для строения, различное оборудование, взрывчатки, различные виды минеральных удобрений, полимеры, добавки для пищи, косметика и другое.

Неорганические вещества – что это

Неорганические вещества – группа химических соединений, которые в своем составе не имеют элементов углерода, водорода или химических соединений, составляющим элементом которых является углерод. Как органические, так и неорганические являются составляющими клеток. Первые в виде дающих жизнь элементов, другие в составе воды, минеральных веществ и кислот, а также газов.

Что общего между органическими и неорганическими веществами

Что может быть общего между двумя, казалось бы, такими понятиями-антонимами? Оказывается, общее и у них имеется, а именно:

  1. Вещества как органичного, так неорганического происхождения состоят из молекул.
  2. Органические и неорганические вещества можно получить в результате проведения определенной химической реакции.

Органические и неорганические вещества – в чем разница

  1. Органические более известны и исследованы в науке.
  2. Органических веществ в мире числится намного больше. Количество известных науке органических – около миллиона, неорганических – сотни тысяч.
  3. Большинство органических соединений связаны между собой с помощью ковалентного характера соединения, связь неорганических между собой возможна с помощью ионного соединения.
  4. Присутствует отличие и по составу входящих элементов. Органические вещества составляют углеродные, водородные, кислородные, реже – азотные, фосфорные, серные и галогенные элементы. Неорганические – состоят из всех элементов таблицы Менделеева, кроме углерода и водорода.
  5. Органические вещества намного значительнее поддаются влиянию горячих температур, могут разрушаться даже при незначительных температурах. Большинство неорганических менее предрасположены к воздействию сильного нагревания из-за особенностей типа молекулярного соединения.
  6. Органические вещества являются составляющими элементами живой части мира (биосферы), неорганические – неживой (гидросферы, литосферы и атмосферы).
  7. Состав органических веществ является по своему строению сложнее, чем состав неорганических.
  8. Органические вещества отличаются большим разнообразием возможностей химических превращений и реакций.
  9. Из-за ковалентного типа связи между органическими соединениями химические реакции по времени продолжаются несколько дольше, чем химические реакции в неорганических соединениях.
  10. Неорганические вещества не могут быть продуктом питания живых существ, даже более того – некоторые из этого типа сочетаний могут быть смертельно опасны для живого организма. Органические вещества являются продуктом, произведенным живой природой, а также элементом строения живых организмов.


Такие вещества как песок, глина, различные минералы, вода, оксиды углерода, угольная кислота, ее соли и другие, встречающиеся в «неживой природе», получили название неорганических или минеральных веществ.

Примерно из ста химических элементов, встречающихся в земной коре, для жизни необходимы только шестнадцать, причем четыре из них - водород (Н), углерод (С), кислород (О) и азот (N) наиболее распространены в живых организмах и составляют 99 % массы живого. Биологическое значение этих элементов связано с их валентностью (1, 2, 3, 4) и способностью образовывать прочные ковалентные связи, которые оказываются прочнее связей, образуемых другими элементами той же валентности. Следующими по важности являются фосфор (Р), сера (S), ионы натрия, магния, хлора, калия и кальция (Na, Mg, Cl, К, Са). В качестве микроэлементов в живых организмах присутствуют также железо (Fe), кобальт (Со), медь (Си), цинк (Zn), бор (В), алюминий (Аl), кремний (Si), ванадий (V), молибден (Мо), иод (I), марганец (Мn).

Все химические элементы в виде ионов либо в составе тех или иных соединений участвуют в построении организма. Например, углерод, водород и кислород входят в состав углеводов и жиров. В составе белков к ним добавляются азот и сера, в составе нуклеиновых кислот - азот, фосфор, железо, участвующие в построении молекулы гемоглобина; магний находится в составе хлорофилла; медь обнаружена в некоторых окислительных ферментах; йод содержится в составе молекулы тироксина (гормона щитовидной железы); натрий и калий обеспечивают электрический заряд на мембранах нервных клеток и нервных волокон; цинк входит в молекулу гормона поджелудочной железы - инсулина; кобальт находится в составе витамина В12.

Соединения азота, фосфора, кальция и другие неорганические вещества служат источником строительного материала для синтеза органических молекул (аминокислот, белков, нуклеиновых кислот и др.) и входят в состав ряда опорных структур клетки и организма. Некоторые неорганическое ионы (например, ионы кальция и магния) являются активаторами и компонентами многих ферментов, гормонов и витаминов. При недостатке этих ионов нарушаются жизненно важные процессы в клетке.

Немаловажные функции в живых организмах выполняют неорганические кислоты и их соли. Соляная кислота входит в состав желудочного сока животных и человека, ускоряя процесс переваривания белков пищи. Остатки серной кислоты, присоединяясь к нерастворимым в воде чужеродным веществам, придают им растворимость, способствуя выведению из организма. Неорганические натриевые и калиевые соли азотистой и фосфорной кислот служат важными компонентами минерального питания растений, их вносят в почву в качестве удобрений. Соли кальция и фосфора входят в состав костной ткани животных. Диоксид углерода (СО2) постоянно образуется в природе при окислении органических веществ (гниение растительных и животных остатков, дыхание, сжигание топлива) в больших количествах он выделяется из вулканических трещин и из вод минеральных источников.

Вода – весьма распространенное на Земле вещество. Почти ѕ поверхности земного шара покрыты водой, образующей океаны, моря. Реки, озера. Много воды находится в газообразном состоянии в виде паров в атмосфере; в виде огромных масс снега и льда лежит она круглый год на вершинах высоких гор и в полярных странах в недрах Земли также находится вода, пропитывающая почву и горные породы.

Вода имеет очень большое значение в жизни растений, животных и человека. Согласно современным представлениям, само происхождение жизни связано с морем. Во всяком организме вода представляет собой среду, в которой протекают химические процессы, обеспечивающие жизнедеятельность организма; кроме того она сама принимает участие в целом ряде биохимических реакций.

Химические и физические свойства воды довольно необычны и связаны главным образом с малыми размерами ее молекул, с полярностью ее молекул и с их способностью соединяться друг с другом водородными связями.

Рассмотрим биологическое значение воды. Вода - превосходный растворитель для полярных веществ. К ним относятся ионные соединения, такие, как соли, у которых заряженные частицы (ионы) диссоциируют (отделяются друг от друга) в воде, когда вещество растворяется, а также некоторые не ионные соединения, например сахара и простые спирты, в молекуле которых присутствуют заряженные (полярные) группы (у сахаров и спиртов это ОН-группы). Когда вещество переходит в раствор, его молекулы или ионы получают возможность двигаться более свободно и, соответственно, его реакционная способность возрастает. По этой причине в клетке большая часть химических реакций протекает в водных растворах. Неполярные вещества, например липиды, не смешиваются с водой и потому могут разделять водные растворы на отдельные компартменты, подобно тому, как их разделяют мембраны. Неполярные части молекул отталкиваются водой и в ее присутствии притягиваются друг к другу, как это бывает, например, когда капельки масла сливаются в более крупные капли; иначе говоря, неполярные молекулы гидрофобны. Подобные гидрофобные взаимодействия играют важную роль в обеспечении стабильности мембран, а также многих белковых молекул, нуклеиновых кислот. Присущие воде свойства растворителя означают также, что вода служит средой для транспорта различных веществ. Эту роль она выполняет в крови, в лимфатической и экскреторной системах, в пищеварительном тракте и во флоэме и ксилеме растений.

Вода обладает большой теплоемкостью. Это значит, что существенное увеличение тепловой энергии вызывает лишь сравнительно небольшое повышение ее температуры. Объясняется такое явление тем, что значительная часть этой энергии расходуется на разрыв водородных связей, ограничивающих подвижность молекул воды, т. е. на преодоление ее клейкости. Большая теплоемкость воды сводит к минимуму происходящие в ней температурные изменения. Благодаря этому биохимические процессы протекают в меньшем интервале температур, с более постоянной скоростью, и опасность нарушения этих процессов от резких отклонений температуры грозит им не столь сильно. Вода служит для многих клеток и организмов средой обитания, для которой характерно довольно значительное постоянство условий.

Для воды характерна большая теплота испарения . Скрытая теплота испарения (или относительная скрытая теплота испарения) есть мера количества тепловой энергии, которую необходимо сообщить жидкости для ее перехода в пар, т. е. для преодоления сил молекулярного сцепления в жидкости. Испарение воды требует довольно значительных количеств энергии. Это объясняется существованием водородных связей между молекулами воды. Именно в силу этого температура кипения воды - вещества со столь малыми молекулами - необычно высока.

Энергия, необходимая молекулам воды для испарения, черпается из их окружения. Таким образом, испарение сопровождается охлаждением. Это явление используется у животных при потоотделении, при тепловой одышке у млекопитающих или у некоторых рептилий (например, у крокодилов), которые на солнцепеке сидят с открытым ртом; возможно, оно играет заметную роль и в охлаждении транспирирующих листьев. Скрытая теплота плавления (или относительная скрытая теплота плавления) есть мера тепловой энергии, необходимой для расплавления твердого вещества (льда). Воде для плавления (таяния) необходимо сравнительно большое количество энергии. Справедливо и обратное: при замерзании вода должна отдать большое количество тепловой энергии. Это уменьшает вероятность замерзания содержимого клеток и окружающей их жидкости. Кристаллы льда особенно губительны для живого, когда они образуются внутри клеток.

Вода - единственное вещество, обладающее в жидком состоянии большей плотностью, чем в твердом. Поскольку лед плавает в воде, он образуется при замерзании сначала на ее поверхности и лишь под конец в придонных слоях. Если бы замерзание прудов шло в обратном порядке, снизу вверх, то в областях с умеренным или холодным климатом жизнь в пресноводных водоемах вообще не могла бы существовать. Лед покрывает толщу воды как одеялом, что повышает шансы на выживание у организмов, обитающих в ней. Это важно в условиях холодного климата и в холодное время года, но, несомненно, особенно важную роль это играло в ледниковый период. Находясь на поверхности, лед быстрее и тает. То обстоятельство, что слои воды, температура которых упала ниже 4 град., поднимаются вверх, обуславливает их перемещение в больших водоемах. Вместе с водой циркулируют и находящиеся в ней питательные вещества, благодаря чему водоемы заселяются живыми организмами на большую глубину.

У воды большое поверхностное натяжение и когезия . Когезия - это сцепление молекул физического тела друг с другом под действием сил притяжения. На поверхности жидкости существует поверхностное натяжение - результат действующих между молекулами сил когезии, направленных внутрь. Благодаря поверхностному натяжению жидкость стремится принять такую форму, чтобы площадь ее поверхности была минимальной (в идеале - форму шара). Из всех жидкостей самое большое поверхностное натяжение у воды. Значительная когезия, характерная для молекул воды, играет важную роль в живых клетках, а также при движении воды по сосудам ксилемы в растениях. Многие мелкие организмы извлекают для себя пользу из поверхностного натяжения: оно позволяет им удерживаться на воде или скользить по ее поверхности.

Биологическое значение воды определяется и тем, что она представляет собой один из необходимых метаболитов, т. е. участвует в метаболических реакциях. Вода используется, например, в качестве источника водорода в процессе фотосинтеза, а также участвует в реакциях гидролиза.

Роль воды для живых организмов находит свое отражение, в частности, в том, что одним из главных факторов естественного отбора, влияющих на видообразование, является недостаток воды (ограничение распространения некоторых растений, имеющих подвижные гаметы). Все наземные организмы приспособлены к тому, чтобы добывать и сберегать воду; в крайних своих проявлениях - у ксерофитов, у обитающих в пустыне животных и т. п. Такого рода приспособления представляются подлинным чудом изобретательности природы.

Биологические функции воды:

У всех организмов:

1) обеспечивает поддержание структуры (высокое содержание воды в протоплазме); 2) служит растворителем и средой для диффузии; 3) участвует в реакциях гидролиза; 4) служит средой, в которой происходит оплодотворение;

5) обеспечивает распространение семян, гамет и личиночных стадий водных организмов, а также семян некоторых наземных растений, например кокосовой пальмы.

У растений:

1) обуславливает осмос и тургесцентность (от которых зависит многое: рост (увеличение клеток), поддержание структуры, движения устьиц и т. д.); 2) участвует в фотосинтезе; 3) обеспечивает транспорт неорганических ионов и органических молекул; 4) обеспечивает прорастание семян - набухание, разрыв семенной кожуры и дальнейшее развитие.

У животных:

1) обеспечивает транспорт веществ;

2) обуславливает осморегуляцию;

3) способствует охлаждению тела (потоотделение, тепловая одышка);

4) служит одним из компонентов смазки, например в суставах;

5) несет опорные функции (гидростатический скелет);

6) выполняет защитную функцию, например в слезной жидкости и в слизи;

7) способствует миграции (морские течения).



Клеткой называют элементарную единицу строения живых организмов. Все живые существа - будь то люди, животные, растения, грибы или бактерии - в своей основе имеют клетку. В чьем-то организме этих клеток много - сотни тысяч клеток составляют тело млекопитающих и рептилий, а в чьем-то мало - многие бактерии состоят из всего одной клетки. Но не так важно количество клеток, как их наличие.

Давно известно, что клетки обладают всеми свойствами живого: они дышат, питаются, размножаются, приспосабливаются к новым условиям, даже умирают. И, как и у всего живого, в составе клеток есть органические и неорганические вещества.

Намного больше, ведь - это и вода, и Разумеется, наибольшая часть отдела под названием "неорганические вещества клетки" отводится воде - она составляет 40-98% от всего объема клетки.

Вода в клетке выполняет множество важнейших функций: она обеспечивает упругость клетки, быстроту проходящих в ней химических реакций, перемещение поступивших веществ по клетке и их вывод. Кроме того, в воде растворяются многие вещества, она может участвовать в химических реакциях и именно на воде лежит ответственность за терморегуляцию всего организма, так как вода обладает неплохой теплопроводностью.

Помимо воды, в неорганические вещества клетки входят и многие минеральные вещества, делящиеся на макроэлементы и микроэлементы.

К макроэлементам относятся такие вещества, как железо, азот, калий, магний, натрий, сера, углерод, фосфор, кальций и многие другие.

Микроэлементы - это, в большинстве своем, тяжелые металлы, такие как бор, марганец, бром, медь, молибден, йод и цинк.

Также в организме есть и ультрамикроэлементы, среди которых золото, уран, ртуть, радий, селен и другие.

Все неорганические вещества клетки играют собственную, важную роль. Так, азот участвует в великом множестве соединений - как белковых, так и небелковых, способствует образованию витаминов, аминокислот, пигментов.

Кальций представляет собой антагонист калия, служит клеем для растительных клеток.

Железо участвует в процессе дыхания, входит в состав молекул гемоглобина.

Медь отвечает за образование клеток крови, здоровье сердца и хороший аппетит.

Бор отвечает за процесс роста, в особенности у растений.

Калий обеспечивает коллоидные свойства цитоплазмы, образование белков и нормальную работу сердца.

Натрий также обеспечивает правильный ритм сердечной деятельности.

Сера участвует в образовании некоторых аминокислот.

Фосфор участвует в образовании огромного количества незаменимых соединений, таких, как нуклеотиды, некоторые ферменты, АМФ, АТФ, АДФ.

И только роль ультрамикроэлементов пока абсолютно неизвестна.

Но одни только неорганические вещества клетки не смогли бы сделать ее полноценной и живой. Органические вещества важны не менее, чем они.

К относятся углеводы, липиды, ферменты, пигменты, витамины и гормоны.

Углеводы делятся на моносахариды, дисахариды, полисахариды и олигосахариды. Моно- ди- и полисахариды являются основным источником энергии для клетки и организма, а вот нерастворяющиеся в воде олигосахариды склеивают соединительную ткань и защищают клетки от неблагоприятного внешнего воздействия.

Липиды делятся на собственно жиры и липоиды - жироподобные вещества, образующие ориентированные молекулярные слои.

Ферменты являются катализаторами, ускоряющими биохимические процессы в организме. Кроме того, ферменты уменьшают количество потребляемой на придание реакционной способности молекуле энергии.

Витамины необходимы для регуляции окисляемости аминокислот и углеводов, а также для полноценного роста и развития.

Гормоны необходимы для регулирования жизнедеятельности организма.