В обычных условиях любое вещество пребывает в одном из трех состояний — твердом, жидком или газообразном (см. Агрегатные состояния вещества). Каждому из этих условий соответствует своя структура связей между молекулами и/или атомами, характеризующаяся определенной энергией связи между ними. Для изменения этой структуры нужен либо приток тепловой энергии извне (например, при плавлении твердого вещества), либо отток энергии вовне (например, при кристаллизации).

Взяв, для начала, твердое вещество, мы понимаем умозрительно, что в нем молекулы/атомы связаны в некую жесткую кристаллическую или аморфную структуру, — при незначительном нагреве они лишь начинают «трястись» вокруг своей фиксированной позиции (чем выше температура, тем больше амплитуда колебаний). При дальнейшем нагревании вещества молекулы расшатываются всё сильнее, пока, наконец, не срываются с «насиженного» места и не отправляются в «свободное плавание». Это и есть плавление или таяние твердого вещества в жидкость. Поступление же энергии, необходимой для таяния вещества, называют теплотой плавления.

График изменения температуры твердого вещества при переходе им точки плавления сам по себе весьма интересен. До точки плавления по мере нагревания атомы/молекулы раскачиваются вокруг своего фиксированного положения всё сильнее, и поступление каждой дополнительной порции тепловой энергии приводит к повышению температуры твердого тела. Однако по достижении твердым веществом температуры плавления, оно на какое-то время так и остается при этой температуре, несмотря на продолжающийся приток тепла, пока в нем не накопится достаточное количество тепловой энергии для разрыва жестких межмолекулярных связей. То есть, в процессе фазового перехода вещества из твердого состояния в жидкое энергия поглощается им без повышения температуры, поскольку вся она уходит на разрыв межмолекулярных связей. Вот почему кубик льда в коктейле даже в самую жару остается ледяным по температуре, пока не растает весь. При этом, тая, кубик льда отбирает тепло у окружающего его коктейля (и тем самым охлаждает его до приятной температуры), а сам набирается энергии, которая требуется ему для разрыва межмолекулярных связей и окончательного саморазрушения.

Количество теплоты, необходимое для плавления или испарения единицы объема твердого вещества или жидкости, называется, соответственно, скрытой теплотой плавления или скрытой теплотой испарения. И величины здесь фигурируют порой немалые. Например, для нагревания 1 кг воды от 0°С до 100°С требуется «всего» 420 000 джоулей (Дж) тепловой энергии, а для того, чтобы обратить этот килограмм воды в 1 кг пара с температурой, равной тем же 100°С, — целых 2 260 000 Дж энергии.

После того, как твердая масса полностью превратилась в жидкость, дальнейшее поступление тепла повлечет вновь за собой повышение температуры вещества. В жидком состоянии молекулы вещества по-прежнему находятся в близком контакте, но жесткие межмолекулярные связи между ними разорваны, и силы взаимодействия, удерживающие молекулы вместе, на несколько порядков слабее, чем в твердом теле, поэтому молекулы начинают достаточно свободно перемещаться друг относительно друга. Дальнейшее поступление тепловой энергии доводит жидкость до фазы кипения , и начинается активное испарение или парообразование.

И, опять же, как было описано в случае таяния или плавления, на какое-то время вся дополнительно поступающая энергия уходит на разрыв жидкостных связей между молекулами и высвобождение их в газообразное состояние (при неизменной температуре кипения). Энергия, затрачиваемая на разрыв этих, казалось бы, некрепких связей, — т. н. скрытая теплота парообразования — также требуется немалая (см. пример выше).

Все те же процессы при оттоке энергии (остужении) вещества происходят в обратном порядке. Сначала газ остывает с понижением температуры, и так происходит, пока он не достигнет точки конденсации — температуры, при которой начинается сжижение, — и она в точности равна температуре испарения (кипения) соответствующей жидкости. При конденсации, по мере того, как силы взаимного притяжения между молекулами начинают брать верх над энергией теплового движения, газ начинает превращаться в жидкость — «конденсироваться». При этом выделяется так называемая удельная теплота конденсации — она в точности равна скрытой удельной теплоте испарения, о которой уже говорилось. То есть, сколько энергии вы потратили на испарение определенной массы жидкости, ровно столько энергии пар и отдаст в виде тепла при конденсации обратно в жидкость.

То, что количество теплоты, выделяемое при конденсации, весьма высоко, — факт легко проверяемый: достаточно поднести ладонь к носику кипящего чайника. Помимо жара от пара, как такового, ваша кожа пострадает еще и от теплоты, выделившейся в результате его конденсации в жидкую воду.

При дальнейшем остывании жидкости до точки замерзания (температура которой равна точке таяния ), еще раз начнется процесс отдачи тепловой энергии вовне без понижения температуры самого вещества. Этот процесс называется кристаллизацией , и при нем выделяется ровно столько же тепловой энергии, сколько отбирается из окружающей среды при плавлении (переходе вещества из твердой фазы в жидкую).

Есть и еще один тип фазового перехода — из твердого состояния вещества непосредственно в газообразное (минуя жидкость). Такое фазовое превращение называется возгонкой , или сублимацией . Самый бытовой пример: вывешенное сушиться на мороз сырое белье. Вода в нем сначала кристаллизуется в лед, а затем — под воздействием прямых солнечных лучей — микроскопические кристаллики льда попросту испаряются, минуя жидкую фазу. Другой пример: на рок-концертах «сухой лед» (замороженная двуокись углерода CO 2) используется для устройства дымовой завесы — она испаряется прямо в воздух, окутывая выступающих музыкантов и также минуя жидкую фазу. Соответственно, на преобразование твердого вещества непосредственно в газ затрачивается энергия сублимации.

Р, т-ре Т и др. параметрам, меняются скачком при непрерывном изменении этих параметров. При этом выделяется или поглощается теплота перехода. В однокомпонентной системе т-ра перехода T 1 связана с давлением р 1 Клапейрона - Клаузиуса уравнением dp 1 /dT 1 = = QIT 1 DV, где Q - теплота перехода, DV - скачок объема. Для фазовых переходов I рода характерны гистерезисные явления (напр., перегрев или переохлаждение одной из фаз), необходимые для образования зародышей другой фазы и протекания фазовых переходов с конечной скоростью. В отсутствие устойчивых зародышей перегретая (переохлажденная) фаза находится в состоянии метастабильного равновесия (см. Зарождение новой фазы). Одна и та же фаза может существовать (хотя и метастабильно) по обе стороны от точки перехода на диаграмме состояния (однако кристаллич. фазы нельзя перегреть выше т-ры плавления или сублимации). В точке фазовых переходов I рода энергия Гиббса G как ф-ция параметров состояния непрерывна (см. рис. в ст. Диаграмма состояния), а обе фазы могут сосуществовать сколь угодно долго, т. е. имеет место т. наз. фазовое расслоение (напр., сосуществование жидкости и ее пара или твердого тела и расплава при заданном полном объеме системы).

Ф азовые переходы I рода - широко распространенные в природе явления. К ним относятся испарение и конденсация из газовой в жидкую фазу, плавление и затвердевание, сублимация и конденсация (десублимация) из газовой в твердую фазу, большинство полиморфных превращений, нек-рые структурные переходы в твердых телах , напр, образование мартенсита в сплаве железо - углерод . В чистых сверхпроводниках достаточно сильное магн. поле вызывает фазовые переходы I рода из сверхпроводящего в нормальное состояние.

При фазовых переходах II рода сама величина G и первые производные G по T, р и др. параметрам состояниям меняются непрерывно, а вторые производные (соотв. теплоемкость , коэф. сжимаемости и термич. расширения) при непрерывном изменении параметров меняются скачком либо сингулярны. Теплота не выделяется и не поглощается, явления гистерезиса и метаста-бильные состояния отсутствуют. К фазовым переходам II рода, наблюдаемым при изменении т-ры, относятся, напр., переходы из парамагнитного (неупорядоченного) состояния в магнитоупо-рядоченное (ферро- и ферримагнитное в Кюри точке , антиферромагнитное в Нееля точке) с появлением спонтанной намагниченности (соотв. во всей решетке или в каждой из магн. подрешеток); переход диэлектрик - сегнетоэлектрик с появлением спонтанной поляризации ; возникновение упорядоченного состояния в твердых телах (в упорядочивающихся сплавах); переход смектич. жидких кристаллов в нематич. фазу, сопровождающийся аномальным ростом теплоемкости , а также переходы между разл. смектич. фазами; l -переход в 4 He, сопровождающийся возникновением аномально высокой теплопроводности и сверхтекучести (см. Гелий); переход металлов в сверхпроводящее состояние в отсутствие магн. поля.

Фазовые переходы могут быть связаны с изменением давления . Многие в-ва при малых давлениях кристаллизуются в неплотноупако-ванные структуры. Напр., структура графита представляет собой ряд далеко отстоящих друг от друга слоев атомов углерода . При достаточно высоких давлениях таким рыхлым структурам соответствуют большие значения энергии Гиббса , а меньшим значениям отвечают равновесные плотноупако-ванные фазы. Поэтому при больших давлениях графит переходит в алмаз . Квантовые жидкости 4 He и 3 He при нормальном давлении остаются жидкими вплоть до самых низких из достигнутых т-р вблизи абс. нуля. Причина этого - в слабом взаимод. атомов и большой амплитуде их "нулевых колебаний" (высокой вероятности квантового туннелирования из одного фиксированного положения в другое). Однако повышение давления приводит к затвердеванию жидкого гелия ; напр., 4 He при 2,5 МПа образует гексаген, плотноупакован-ную решетку.

Общая трактовка фазовых переходов II рода предложена Л. Д. Ландау в 1937. Выше точки перехода система, как правило, обладает более высокой симметрией , чем ниже точки перехода, поэтому фазовый переход II рода трактуется как точка изменения симметрии . Напр., в ферромагнетике выше точки Кюри направления спиновых магн. моментов частиц распределены хаотически, поэтому одновременное вращение всех спинов вокруг одной и той же оси на одинаковый угол не меняет физ. св-в системы. Ниже точки перехода спины имеют преимуществ. ориентацию, и совместный их поворот в указанном выше смысле изменяет направление магн. момента системы. В двухкомпо-нентном сплаве , атомы к-рого А и В расположены в узлах простой кубич. кристаллич. решетки, неупорядоченное состояние характеризуется хаотич. распределением А и В по узлам решетки, так что сдвиг решетки на один период не меняет св-в. Ниже точки перехода атомы сплава располагаются упорядочено: ...ABAB... Сдвиг такой решетки на период приводит к замене всех атомов А на В и наоборот. T. обр., симметрия решетки уменьшается, т. к. подрешетки, образуемые атомами А и В, становятся неэквивалентными.

Симметрия появляется и исчезает скачком; при этом нарушение симметрии можно охарактеризовать физ. величиной, к-рая при фазовых переходах II рода изменяется непрерывно и наз. параметром порядка. Для чистых жидкостей таким параметром является плотность, для р-ров - состав, для ферро- и ферримагнетиков - спонтанная намагниченность, для сегне-тоэлектриков - спонтанная электрич. поляризация , для сплавов - доля упорядочившихся атомов для смектич. жидких кристаллов - амплитуда волны плотности и т. п. Во всех перечисленных случаях при т-рах выше точки фазовых переходов II рода параметр порядка равен нулю, ниже этой точки начинается его аномальный рост, приводящий к макс. значению при T = O.

Отсутствие теплоты перехода, скачков плотности, и концентраций , характерное для фазовых переходов II рода, наблюдается и в критич. точке на кривых фазовых переходов I рода (см. Критические явления). Сходство оказывается очень глубоким. Состояние в-ва около критич. точки также можно охарактеризовать величиной, играющей роль параметра порядка. Напр., в случае равновесия жидкость - пар таким параметром служит отклонение плотности в-ва от критич. значения: при движении по критич. изохоре со стороны высоких т-р газ однороден и отклонение плотности от критич. значения равно нулю, а ниже критич. т-ры в-во расслаивается на две фазы, в каждой из к-рых отклонение плотности от критической не равно нулю.

Поскольку вблизи точки фазового перехода II рода фазы мало отличаются друг от друга, возможно существование флуктуации параметра порядка, точно так же, как вблизи критич. точки. С этим связаны критич. явления в точках фазовых переходов II рода: аномальный рост магн. восприимчивости ферромагнетиков и диэлектрич. восприимчивости сегнетоэлектриков (аналогом является рост сжимаемости вблизи критич. точки перехода жидкость - пар); резкий рост теплоемкости ; аномальное рассеяние световых волн в системе

Фазовые переходы

ФАЗОВЫЕ ПЕРЕХОДЫ (фазовые превращения), переходывещества из одной фазы в другую, происходящие при изменении температуры, давления или под действиемкаких-либо других внешних факторов (например, магнитных или электрических полей). Фазовые переходы,сопровождающиеся скачкообразным изменением плотности и энтропии вещества, называются фазовымипереходами 1-го рода; к ним относятся испарение, плавление , конденсация , кристаллизация . В процессетаких фазовых переходов выделяется или поглощается соответственно теплота фазовых переходов. Прифазовых переходах 2го рода плотность и энтропия вещества меняются непрерывно в точке перехода, атеплоемкость, сжимаемость и другие подобные величины испытывают скачок. Как правило, при этомизменяется и соответственно симметрия фазы (например, магнитная при фазовых переходах изпарамагнитного в ферромагнитное состояние в точке Кюри).

Фазовые переходы первого рода фазовые переходы , прикоторых скачком изменяются первые производные термодинамических потенциалов по интенсивнымпараметрам системы (температуре или давлению). Переходы первого рода реализуются как при переходесистемы из одного агрегатного состояния в другое, так и в пределах одного агрегатного состояния (в отличиеот фазовых переходов второго рода , которые происходят в пределах одного агрегатного состояния).

Примеры фазовых переходов первого рода

    при переходе системы из одного агрегатного состояния в другое: кристаллизация (переход жидкой фазы втвердую), плавление (переход твердой фазы в жидкую), конденсация (переход газообразной фазы в твердуюили жидкую), возгонка (переход твердой фазы в газообразную), эвтектическое , перитектическое имонотектическое превращения.

    в пределах одного агрегатного состояния: эвтектическое, перитектическое и полиморфное превращения,распад пересыщенных твердых растворов, распад (расслоение) жидких растворо, упорядочение твердыхрастворов.

Иногда к фазовым переходам первого рода относят также мартенситные превращения (условно, так как входе мартенситного превращения реализуется переход в стабильное, но неравновесное состояние -метастабильное состояние ).

Фазовые переходы второго рода -фазовые переходы , прикоторых первые производные термодинамических потенциалов по давлению и температуре изменяютсянепрерывно, тогда как их вторые производные испытывают скачок. Отсюда следует, в частности, что энергия и объём вещества при фазовом переходе второго рода не изменяются, но изменяются его теплоёмкость ,сжимаемость, различные восприимчивости и т. д.

ФП (Wiki )

Фа́зовый перехо́д (фазовое превращение) в термодинамике - переход вещества из одной термодинамической фазы в другую при изменении внешних условий. С точки зрения движения системы по фазовой диаграмме при изменении её интенсивных параметров (температуры, давления и т. п.), фазовый переход происходит, когда система пересекает линию, разделяющую две фазы. Поскольку разные термодинамические фазы описываются различными уравнениями состояния, всегда можно найти величину, которая скачкообразно меняется при фазовом переходе.

Поскольку разделение на термодинамические фазы - более мелкая классификация состояний, чем разделение по агрегатным состояниям вещества, то далеко не каждый фазовый переход сопровождается сменой агрегатного состояния. Однако любая смена агрегатного состояния есть фазовый переход.

Наиболее часто рассматриваются фазовые переходы при изменении температуры, но при постоянном давлении (как правило равном 1 атмосфере). Именно поэтому часто употребляют термины «точка» (а не линия) фазового перехода, температура плавления и т. д. Разумеется, фазовый переход может происходить и при изменении давления, и при постоянных температуре и давлении, но и при изменении концентрации компонентов (например, появление кристалликов соли в растворе, который достиг насыщения).

Классификация фазовых переходов

При фазовом переходе первого рода скачкообразно изменяются самые главные, первичные экстенсивные параметры: удельный объём, количество запасённой внутренней энергии, концентрация компонентов и т. п. Подчеркнём: имеется в виду скачкообразное изменение этих величин при изменении температуры, давления и т. п., а не скачкообразное изменение во времени (насчёт последнего см. ниже раздел Динамика фазовых переходов ).

Наиболее распространённые примеры фазовых переходов первого рода :

    плавление и кристаллизация

    испарение и конденсация

    сублимация и десублимация

При фазовом переходе второго рода плотность и внутренняя энергия не меняются, так что невооружённым глазом такой фазовый переход может быть незаметен. Скачок же испытывают их производные по температуре и давлению: теплоёмкость, коэффициент теплового расширения, различные восприимчивости и т. д.

Фазовые переходы второго рода происходят в тех случаях, когда меняется симметрия строения вещества (симметрия может полностью исчезнуть или понизиться). Описание фазового перехода второго рода как следствие изменения симметрии даётся теорией Ландау. В настоящее время принято говорить не об изменении симметрии, но о появлении в точке перехода параметра порядка , равного нулю в менее упорядоченной фазе и изменяющегося от нуля (в точке перехода) до ненулевых значений в более упорядоченной фазе.

Наиболее распространённые примеры фазовых переходов второго рода:

    прохождение системы через критическую точку

    переход парамагнетик-ферромагнетик или парамагнетик-антиферромагнетик (параметр порядка - намагниченность)

    переход металлов и сплавов в состояние сверхпроводимости (параметр порядка - плотность сверхпроводящего конденсата)

    переход жидкого гелия в сверхтекучее состояние (п.п. - плотность сверхтекучей компоненты)

    переход аморфных материалов в стеклообразное состояние

Существование фазовых переходов более чем второго порядка до сих пор экспериментально не подтверждено .

В последнее время широкое распространение получило понятие квантовый фазовый переход, то есть фазовый переход, управляемый не классическими тепловыми флуктуациями, а квантовыми, которые существуют даже при абсолютном нуле температур, где классический фазовый переход не может реализоваться вследствие теоремы Нернста.

Динамика фазовых переходов

Как сказано выше, под скачкообразным изменением свойств вещества имеется в виду скачок при изменении температуры и давления. В реальности же, воздействуя на систему, мы изменяем не эти величины, а её объем и её полную внутреннюю энергию. Это изменение всегда происходит с какой-то конечной скоростью, а значит для того, чтобы «покрыть» весь разрыв в плотности или удельной внутренней энергии, нам требуется некоторое конечное время. В течение этого времени фазовый переход происходит не сразу во всём объёме вещества, а постепенно. При этом в случае фазового перехода первого рода выделяется (или забирается) определённое количество энергии, которая называется теплотой фазового перехода . Для того, чтобы фазовый переход не останавливался, требуется непрерывно отводить (или подводить) это тепло, либо компенсировать его совершением работы над системой.

В результате, в течение этого времени точка на фазовой диаграмме, описывающая систему, «замирает» (то есть давление и температура остаются постоянными) до полного завершения процесса.

Рассматривая изотермы Ван-дер-Ваальса, мы видели, что часть изотермы отвечала газообразном состояния, а часть - жидкому состоянию. Совокупность однородных частей, на которые распадается система, называют фазами.

Фаза - термодинамически равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Если, например, в закрытом сосуде находится вода, то эта система является двухфазной: жидкая фаза - вода; газообразная фаза - смесь воздуха с водяными парами. Если в воду бросить кусочки льда, то эта система станет трехфазной, появился лед, который является твердой фазой. Часто понятие «фаза» применяют в смысле агрегатного состояния, но надо учитывать, что оно шире, чем понятие «агрегатное состояние».

Агрегатные состояния - состояния одного и того же вещества, переходы между которыми сопровождаются скачкообразным изменением его физических свойств. Вещество может быть в трех агрегатных состояниях: твердом, жидком и газообразном (иногда называют еще четвертое состояние - плазму). В пределах одного агрегатного состояния вещество может находиться в нескольких фазах, отличающихся по своим свойствам, составу и строению (лед, например, встречается в пяти различных модификациях - фазах).

Переход вещества из одной фазы в другую - фазовый переход - всегда связан с качественными изменениями свойств вещества. Примером фазового перехода могут служить изменения агрегатного состояния вещества или переходы, связанные с изменениями в составе, строении и свойствах вещества (например, переход кристаллического вещества из одной модификации в другую).

Различают фазовые переходы двух типов. Фазовый переход I рода (например, плавления, кристаллизация) сопровождается поглощением или выделением теплоты, названной теплотой фазового перехода. Фазовые переходы I рода характеризуются постоянством температуры в течение процесса, изменением энтропии и объема. И это легко объяснить. Например, при плавлении телу нужно передать некоторое количество теплоты, чтобы обеспечить разрушение кристаллической решетки. Теплота, подводимая при плавлении, идет не на нагрев тела, а на разрыв межатомных связей, поэтому плавление протекает при постоянной температуре. В подобных переходах - из более упорядоченного кристаллического состояния в менее упорядоченное жидкое состояние - степень беспорядка увеличивается, т.е. согласно второму закону термодинамики этот процесс связан с ростом энтропии системы. Если переход происходит в обратном направлении (кристаллизация), то система теплоту выделяет.

Фазовый переход II рода - переход, не связанный с поглощением или выделением теплоты и изменением объема. Эти переходы характеризуются постоянством объема и энтропии, но скачкообразным изменением теплоемкости.

Примерами фазовых переходов II рода являются: переход ферромагнитных веществ (железа, никеля) при определенных давлении и температуре в парамагнитное состояние, переход металлов и некоторых сплавов при очень низких температурах в сверхпроводящее состояние, характеризующееся скачкообразным уменьшением электрического сопротивления до нуля; превращения обычного жидкого гелия (гелия I) при Т = 2,9 К в другую жидкую модификацию (гелий II), который имеет свойство сверхтекучести.

Старик шел по дороге и увидел людей работающих на огромной стройке. Он спросил у них: – «Чем вы заняты?».
Первый ответил: – «Не видишь что ли, песок таскаю и эти проклятые камни!».
Второй ответил: – «Бетонирую перекрытия».
Третий сказал: – «Вкалываю от зари до зари».
Четвертый же ответил: – «Я строю новый космодром, с которого моя дочь полетит к звёздам».
© старая притча на новый лад

Однажды я заметил интересную закономерность: – острота разногласий в обществе, прямо пропорциональна уровню технологического развития этого са́мого общества.
И чем лучше развиты люди – тем спокойнее они воспринимают что-то новое. Оценивая открывающиеся перспективы с точки зрения пользы, рациональности и здравого смысла.

Что такое «фазовый переход»?
В физике, фазовый переход это превращение вещества из одного своего состояния в другое (например, когда лёд становится водой, а вода – па́ром), происходящее под воздействием ряда условий (при изменении давления, температуры, концентрации, магнитного поля и т.п.). Процесс не мгновенен, занимает какое-то время, и требует поддержания созданных условий. При этом, во внешнюю среду выделяется (или забирается из неё) энное количество энергии.
А потом р-раз! – и «мир уже никогда не будет прежним».

Если рассматривать общество как воду (всё течет, всё изменяется), то для фазового перехода точно так же потребуется создать необходимые условия. По моим расчетам, для масштабного социального сдвига, требуется от 2 до 7 лет (в зависимости от силы воздействия и уровня развития общества).

Какие условия должны быть созданы для перехода количества в качество?
1. Непрерывный научно-технический прогресс, плоды которого быстро проникают в жизнь общества;
2. Нарастание социального давления снизу (когда жить по новому не дают, а по старому жить – отвратительно);
3. Повышение самостоятельности и автономности (от государства и элиты), информированности и интеллектуальной развитости граждан;
4. Распространение Сети, популяризация открытого пространства и открытых решений;
5. Что-то ещё;

В идеальном мире, если можно было бы задействовать сразу все эти процессы, мы бы получили быстрый и качественный результат. Но и по отдельности они могут капля за каплей подтачивать историческую легитимность современного мироустройства.

Общество будущего – это общество пережившее научно-техническую революцию. А точкой фазового перехода станет момент, когда появившиеся технологии позволят жить по-новому, автономно от старой элиты.
Произойдет разрыв между «властелинами мира» и простыми жителями. Люди получат «элитарные» возможности – а элита лишится ореола всемогущества. И это будет первый шаг в Открытый Мир, где будущее и люди – станут достойны друг друга.

Система Открытого Мира.
Из-за чего сражаться – отнимая жизни других, если в один прекрасный день ресурсов и производственных мощностей станет достаточно для всех?
О чем до хрипоты спорить людям (бросаясь друг на друга с топорами), – если все и каждый будут довольны тем, как наконец-то реализуют социально-экономическую модель в обществе?

– Сторонники левых идей получат «торренты для реальной жизни», и каждый человек станет производителем и потребителем одновременно. Без эксплуатации человека человеком; без классов (и принудительной «деклассации»); без денег в привычной роли – как синонима власти и товара особого рода (а не средства учета); без унижения и пресмыкания на чужих социальных лифтах; без насилия над собой и своими идеалами.
Будет реализован фундаментальный принцип: – «От каждого по способности, каждому по потребности». Любой человек сможет заняться делом по душе – делясь успехами с окружающим миром. Это ведь именно то, что можно назвать коммунизмом.

– Каждый народ сможет развиваться по своей уникальной стратегии, без накладываемых ограничений и сложностей, без агрессии и перетягивания одеял, без поиска виноватых среди иноземцев и инородцев. Понимая чужих и друг друга так, словно знаешь все языки мира.
Народы и нации обретут мощную силу: – силу генераторов культуры, – развивая и обогащая планету и единую информационную Сеть. Разве будут противиться этому националисты?

– Каждый человек станет в высшей степени свободен в экономическом плане, а его личная собственность – будет только его (так как общество и так достаточно обеспечено всем необходимым).
Вы сможете вести товарообмен без границ и таможен. Деньги станут электронными, а коррупция уйдет в прошлое как анахронизм. Будут ли против этого либералы и сторонники свободного рынка?

– Люди будут самостоятельно вырабатывать «правила игры», переписывая общественный договор так, – чтобы развиваться максимально быстро и эффективно.
Вместо набивших оскомину «лидеров», – будет услышан голос каждого человека. Выборы и референдумы (разного уровня) станут честными и открытыми, – за счет мощных систем криптозащиты, оберегающей ваш голос от подделки. Каждого избранника можно будет отозвать, поощрить или же наказать.
Останется ли повод для недовольства у демократов и сторонников самоуправления (например, анархистов)?

– Если вы сторонник глобализации, то сможете почувствовать себя гражданином мира. Сделав открытую надстройку над исторически сложившимися странами. Основав «Земной Альянс» – как сообщество раЗ ных стран, раВ ных внутри себя. Это будет планета открытых границ, где все страны живут в мире (сохраняя и развивая своё культурное наследие), и действуют сообща в общих наднациональных проектах (исследованиях, медицине, освоении космоса), но не сливаются в одно гипертрофированное государство.

– Если же наоборот, вы хотите пожить в моно-этносе, – пожалуйста, живите и развивайте свои родные края. Никто не призывает к принудительному «компоту» из разных культур.

...
О чём можно спорить в таких условиях? Простым и естественным способом будет реализован общий позитивный сценарий. Все получат желаемое, и никто не уйдет обиженным.

Власть либо «берут», – жёстко концентрируя её вокруг себя, – калёным железом вбивая свою волю в несовершенную реальность (надеясь, что не допустил ошибку).
Либо, – власть раздают всем гражданам через механизмы НТР. Делая людей сопричастными к правильному (с их же точки зрения) будущему.

Зачем это самим людям?
Затем, чтобы перейти в новую эпоху развития. Был кассиром – стал инженером. Был дворником – стал художником. Был сейлз-менеджером – стал изобретателем. Был нищим – стал богаче. Был смертен – обрёл бессмертие. Пахал «на дядю» с утра до зари – занимаешься любимым делом. Ползал по земле не смея поднять глаза в небо – покоряешь в космос.
Каждый сможет реализовать свою заветную мечту, которая иначе была бы невозможна. И что ещё очень важно, – плоды своих трудов вы сможете увидеть ещё при своей собственной жизни.

Ресурсы и технологии.
Каждый день нас окружает масса чисто физических ограничений. Людям приходится выискивать некий оптимум и соблюдать баланс интересов. Иногда вставая «враскаряку» между своими желаниями и чужими возможностями, в мире сверх-ограниченных ресурсов.

1. Для достойной жизни миллиардов людей, для создания современных производств, передвижения по планете (и вне её), Человечеству потребуется сверхмощный источник энергии. Тогда станет возможным дёшево осуществить любые чрезмерно энерго-затратные (хотя и полезные) проекты.
Что это будет? Термоядерный синтез, эффективное использование солнечной энергии, какие-то иные перспективные технологии? – поживём – увидим.

2. Пройдут годы, прежде чем каждый человек станет производителем и потребителем одновременно. Появится универсальный фабрикатор, и с этого момента каждый из вас сможет быстро и просто «распечатывать» (т.е. воспроизводить из уже созданных 3D-моделей) любые нужные вам вещи.
Какая разница между «десяткой» и новеньким «Porsche» – если конечная стоимость в ресурсах окажется практически идентична? Каждый получит желаемое, а «престиж» и «понты» – уйдут в прошлое. Вместо этого появится новое явление:

3. Социальная репутация.
Если станет невозможным выделиться перед соседом, то куда денется здоровый дух соперничества и соревновательности? Как «показать себя»?
Себя можно будет проявить через социально полезные действия. Сделать открытие или рационализировать имеющееся, совершить подвиг или облегчить жизнь людей, отремонтировать школу или улучшить массовые аэромобили, победить на соревнованиях или закончить ВУЗ с отличием, и так далее.
За это, общество будет начислять вам «социальные баллы» и присуждать «ачивки» («медали» в электронном виде). Наглядно отображая насколько вы «полезны» в глазах окружающих. С развитием технологии «дополненной реальности», ваш социальный капитал и заслуги будут сразу видны вашим друзьям, коллегам и просто людям на улице.

Баллы – это не деньги (к тому же, людей из общества после фазового перехода, уже давно не удивить чьим-то материальным достатком). Передавать их другим людям – не получится чисто технически («лог» ваших достижений привязан к вашему электронному паспорту).
Присуждают социальный капитал как заслуженные профессионалы в своей сфере (это касается науки и техники), так и само общество – автоматически поощряя социально полезные, проверяемые действия. Окончил школу на все 5-ки – получи +n баллов к своему «социальному капиталу». Победил на Олимпиаде? Повысил КПД электростанции? Аналогично, получаете +m баллов.

Появится универсальная таблица, где будет открыто показываться, чему отдаёт приоритет общество. Это будет сделано в виде набора макро-целей, нацеленность на достижение которых будет давать «зелёный свет» и дополнительно поощряться.
Например: – освоение космоса, биологическое бессмертие, победа над голодом и болезнями, создание новых материалов, творчество и т.п..

Смысл социального капитала в том, что он даёт вам приоритет на совершение тех или иных действий, требующих либо огромных ресурсов, либо коллективных трудозатрат других людей.
Например: – вы сможете раньше других начать исследования (задействовав ресурсы передовой лаборатории), полететь в космос, погрузиться в глубины океана и т.п.. (А так как социальный капитал служит формой поощрения со стороны общества (и государства), на его «обеспечение» выделяют ресурсы, использование которых происходит в натуральной форме (если вы выбрали лабораторию – ей передают средства для обеспечения вашего эксперимента).

Само общество, в чём-то будет похоже на Сеть (здесь ведь тоже есть «буйки» за которые лучше не заплывать, – а в остальном, каждый делает то, что ему нравится). Правила и ограничения – открыто проговариваются и обсуждаются.

4. Произойдет унификация вещей.
Например, вместо домашнего ПК, ноутбука, планшета, телефона, навигатора и других гаджетов – у каждого появится что-то вроде универсального коммуникатора, с изменяемым размером экрана и полным функционалом остальных устройств. Делать универсальный тип массового товара – намного экономичнее по ресурсами.
Одежда, наверняка, сможет менять расцветку под настроение, сохраняя показатели прочности и аккуратности, – и вы тут же разгрузите шкафы.

И так пойдет по всем направлениям. Вместо автопарка в гараже – вы купите один, модульный флайер на автопилоте, и сможете обновлять его прошивку и отдельные модули. Аппарат устарел окончательно? – сдаёте на переработку.
Человеку нужно не так уж много физических вещей, для комфортной и современной жизни. Куда важнее твёрдо знать, что если вам что-то потребуется, то, – вуаля – и всё окажется под рукой.

5. Массу ресурсов можно будет высвободить повторно переработав и использовав уже однажды созданное и устаревшее/пришедшее в негодность. Это будет рациональное (т.е. рачительно относящееся к ресурсам) общество (возможно, использующее ИИ для оптимизации системы хозяйствования).
И это произойдёт не от того, что у нас сложится общество аскетов, – а наоборот, от того, что необходимые конечные товары станет получить так легко, что вы перестанете заниматься складированием всего, что «авось пригодится».

6. Знания как ресурс особого типа.
Давным-давно люди пользовались медными орудиями труда, – а потом им стало доступным для обработки железо. Ещё вчера мы использовали керосин и дрова, – а затем укротили энергию атома.
Разве что-то изменилось на планете? Разве этих ресурсов не было на ней с самого начала?

Изменился уровень технологий и знаний. Знания – расширяют ресурсную базу Человечества. То, что ещё вчера нельзя было использовать – становится востребованным. То, что устарело – получает вторую жизнь и прирост КПД. То, что казалось невероятно затратным – становится «бросовым» товаром.

В Открытом Мире, каждый человек сможет непрерывно обучаться новому, двигаясь вперёд, и становясь (в каждый момент времени) «вершинкой» в своем возможном развитии (превосходя самого себя в будущем).

7. Что-то ещё.

...
Новые возможности дают все шансы раскрыться и талантливым одиночкам, и коллективам исследователей, и тем, кто действует сообща – находясь за тысячи километров друг от друга.
Приближается золотой век для изобретателей и мечтателей.